Candidate Name	Centre Number			Candidate Number				er		
						0				

GCSE

CHEMISTRY

UNIT 1: CHEMICAL SUBSTANCES, REACTIONS AND ESSENTIAL RESOURCES HIGHER TIER

SAMPLE ASSESSMENT MATERIALS

(1 hour 45 minutes)

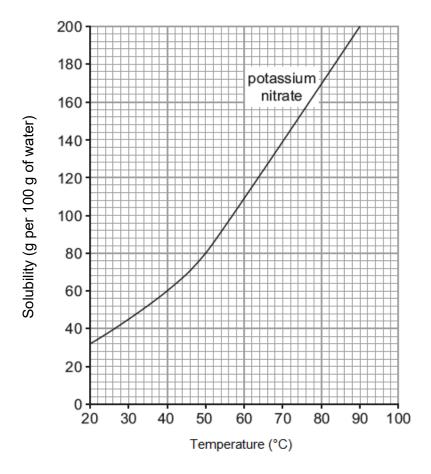
For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	9					
2.	11					
3.	7					
4.	10					
5.	5					
6.	7					
7.	8					
8.	6					
9.	10					
10.	7					
Total	80					

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions.


Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. Question **8** is a quality of extended response (QER) question where your writing skills will be assessed.

Answer all questions.

1. The graph shows the solubility curve of potassium nitrate.

(a) The table shows the solubility of lead nitrate at different temperatures.

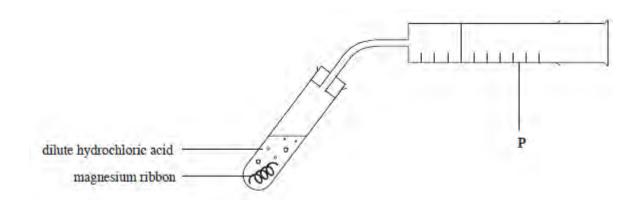
Temperature (°C)	20	40	60	80	100
Solubility of lead nitrate (g per 100 g of water)	52	72	90	112	136

(i)	Plot the solubility of lead nitrate on the grid above.	[3]
(ii)	Using the graphs, compare the solubilities of potassium nitrate and lead nitrate between 20 $^{\circ}\text{C}$ and 100 $^{\circ}\text{C}.$	[3]

(b)	Lucy wanted to find the solubility of substance X at room temperature. She
	measured 20.0 g of the substance into a conical flask and added 50.0 g of
	water. She stirred the mixture carefully until no more solid dissolved. She
	then separated the undissolved solid using a filter paper and dried the paper
	and solid overnight before weighing.

Her results were as follows.

Mass of dry filter paper + substance $\mathbf{X} = 5.1 \,\mathrm{g}$ Mass of dry filter paper = $0.2 \,\mathrm{g}$


Use this information to calculate the solubility of substance **X** in g per 100 g of water.

solubility = g per 100 g of water

_

[3]

2. Trystan carried out an investigation into the reaction between dilute hydrochloric acid (HCl) and magnesium ribbon. He reacted the magnesium with five different concentrations of acid and measured the volume of hydrogen gas produced after 30 s using the apparatus below.

- (b) Trystan's result are shown below.

Concentration of HCI (mol/dm³)	Volume of H ₂ gas produced (cm ³)
0.2	8
0.5	17
1.0	26
1.5	30
2.0	30

(i)	State what can be concluded about the effect of concentration o on the rate of the reaction. Explain this effect using your	f acid
	understanding of particle theory.	[3]

	(ii)	Trystan initially measured the volume of gas collected in 60 s. Explain why he amended his plan after making these measurements. [2]	
	(iii)	State two factors other than concentration which could affect the rate of the reaction between hydrochloric acid and magnesium. [2]	1
		Factor 1	
		Factor 2	
;)		tone is made of calcium carbonate. It reacts slowly with acid rain and is ally eaten away.	
		n an experiment based on this reaction to identify which of three es of rainwater is the most acidic. [3]	

(a)	Carbon dioxide and oxygen levels in the atmosphere are kept in balance the carbon cycle. State and explain how two <i>biological</i> processes help this balance.	
(b)	Many scientists believe that an increase in the use of fossil fuels has led global warming.	ı
	(i) Describe how global warming is different to the greenhouse effect	ct
	(ii) Describe two possible consequences of continued global warming over the next century.	า(
		• •
	(iii) Explain the principle of carbon capture and storage as a method limiting future global warming.	c

4. (a) When a metal carbonate undergoes thermal decomposition it releases a gas and forms a metal oxide. The table gives the temperature at which some carbonates decompose.

Metal carbonate	Decomposition temperature (°C)
calcium carbonate	840
copper(II) carbonate	290
magnesium carbonate	350
potassium carbonate	890

(i)	State which carbonate is the most stable and give a reason for your answer.	[1]
(ii)	Describe an experiment to show the thermal decomposition of copper(II) carbonate. Include the observations made and state how you would collect and identify the gas formed.	
	You may include a diagram in your answer.	[4]
		• • •

(iii) A student was given samples of each of these carbonates labelled **A**, **B**, **C** and **D**. He made the following observations.

Metal carbonate	Appearance	Colour seen in flame test
Α	white powder	brick-red
В	white powder	lilac
С	green powder	green
D	white powder	no colour

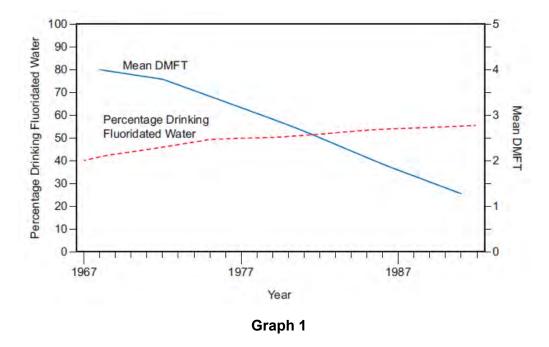
		State the conclusions that he should draw from both sets of observations.	[2]
			• • • •
(b)		nitrates, such as potassium nitrate, also undergo thermal nposition.	
	(i)	Balance the chemical equation for this reaction.	[1]
		\square KNO $_3$ \rightarrow \square KNO $_2$ + O $_2$	
	(ii)	Calculate the percentage of oxygen present in KNO ₃ .	[2]
		$A_{r}(K) = 39$ $A_{r}(N) = 14$ $A_{r}(O) = 16$	

percentage = %

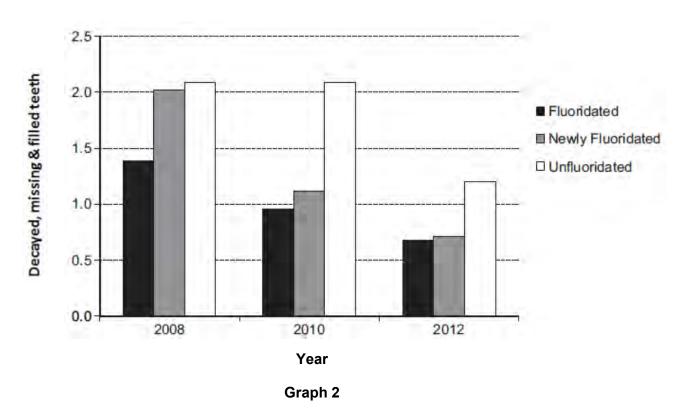
10

GCSE CHEMISTRY Sample Assessment Materials 47

Describe and explain the processes taking place at both.	[5]


6. The table below shows information about three Group 7 elements.

Name	Melting point (°C)	Boiling point (°C)	Colour
bromine	-7	59	orange-brown
chlorine	-107	–35	yellow-green
iodine	114	184	grey


(a)	Using the information in the table state the trend in melting points down Group 7 and give the physical states of each element at room temperature (20 °C).
	Trend in melting points
	Physical states
(b)	Astatine lies below iodine in the Periodic Table. Predict the melting point of astatine. Explain how you reach this conclusion. [1]
	Melting point
	Explanation
(c)	Chlorine has two naturally occurring isotopes $ ^{35}$ Cl and 37 Cl. The isotope containing 18 neutrons makes up 75 % of all chlorine atoms.
	Calculate the relative atomic mass (A_r) of chlorine. [3]
	isotope 1 isotope 2
$A_r =$	(mass × percentage abundance) + (mass × percentage abundance)
	100
	$A_{r} = \dots$

7. The graphs below show data on fluoridation of water and numbers of decayed, missing and filled teeth (DMFT) seen in the population of children aged 12.

Graph 1 shows data collated by the *Center of Disease Control* in the U.S.A. from 1967-1992.

Graph 2 shows data from an Australian dental paper comparing mean numbers of DMFT in three different areas. The fluoridated water area has had fluoride added to its water supply for over 20 years. The newly fluoridated area has had fluoride added since 2008. The unfluoridated area has never had fluoride added to its supply.

(a)	Calculate the percentage decrease in mean DMFT in the newly fluoridate area between 2008 and 2010.	d [2]
	decrease =	%
(b)	Suggest a possible reason why the levels of DMFT decreased in the unfluoridated area between 2010 and 2012. Explain your reasoning.	[2]
(c)	A student claims that water should be fluoridated in order to decrease me DMFT. Use the data from both graphs and your own knowledge to evaluation this claim.	
		• • • • • • • • • • • • • • • • • • • •

GCSE CHEMISTRY Sample Assessment Materials 51

Discuss the methods used to soften hard water.	[6 QER]

9.	(a)	The reactivity of Group 7 elements was investigated by reacting each halogen
		with solutions of each halide.

(i) Complete the table below by adding a tick (✓) to indicate that a reaction takes place and a cross (x) where no reaction occurs.
[2]

Halagan	Solution of halide ion				
Halogen	sodium chloride	sodium iodide	sodium bromide		
bromine, Br ₂					
chlorine, Cl ₂		✓			
iodine, I ₂					

ic [3]	(ii) Explain the trend in reactivity in Group 7 in terms of electronistructure.
kes place [2]	(iii) Write the balanced symbol equation for the reaction that tak between chlorine and sodium iodide.
	++

[3]

(b)	Bromine and fluorine can react together to form two different compounds.
	One of them has a relative molecular mass (M_r) of 137 while the other is
	formed from 355 g of bromine and 430 g of fluorine.
	3

Deduce the formulae of both of these compounds. Show your working throughout.

 $A_{\rm r}({\rm Br}) = 80$ $A_{\rm r}({\rm F}) = 19$

Compound 1

Compound 2

10

10.	(a)	The contact process is used to produce sulfuric acid. One step in this process is the production of sulfur trioxide shown in the following equation. $SO_2 + O_2 \rightarrow SO_3$	
		A catalyst of vanadium pentoxide is used in this step.	
		State the purpose of the catalyst and explain how it is effective in this reaction. [2]]
	(b)	The sulfur dioxide required in the above reaction, can be produced by heating sulfide ores such as iron sulfide, FeS_2 , in oxygen.	l
		$4\text{FeS}_2(s) \hspace{0.2cm} + \hspace{0.2cm} 11\text{O}_2(g) \hspace{0.2cm} \rightarrow \hspace{0.2cm} 2\text{Fe}_2\text{O}_3(s) \hspace{0.2cm} + \hspace{0.2cm} 8\text{SO}_2(g)$	
		(i) Calculate the number of moles in 176 tonnes of SO ₂ . [3]]
		1 tonne = 1×10^9 g	
		$A_{\rm r}(S) = 32$ $A_{\rm r}(O) = 16$	
		number of moles = mo	ıl
		(ii) Use you answer to part (i) to calculate the minimum mass of iron sulfide, FeS ₂ , required to produce 176 tonnes of SO ₂ . [2]]
		$A_{\rm r}({\rm Fe}) = 56$ $A_{\rm r}({\rm S}) = 32$ $A_{\rm r}({\rm O}) = 16$	
		mass = tonnes	s [-

END OF PAPER

© WJEC CBAC Ltd.

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br⁻
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH-
Hydrogen	H⁺	lodide	I ⁻
Iron(II)	Fe ²⁺	Nitrate	NO ₃
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li⁺	Sulfate	SO ₄ ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag [⁺]		
Sodium	Na [†]		
Zinc	Zn ²⁺		

Avogadro's number, $L = 6 \times 10^{23}$

Atomic number -

Mass number

					PE	PERIODIC TABLE OF ELEMENTS	IC T	ABLE	≣ 0F		MEN	TS					
~	7					Group	dn					က	4	2	9	7	0
								±.									⁴ He
		ı						Hydrogen			'						Helium
7₁Li	⁹ ₄ Be						'					11 B	12 C	N 41 7	0 ₈ 1	19 F	20 Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
23 Na	24 Mg											27 AI	28 Si	31 P	32 S 16	35 CI	40 Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
39 K	40 Ca	45 Sc 21 Sc	48 Ti	51 \	52 Cr	55 Mn	56 Fe	⁵⁹ Co	59 Ni	64 29 Cu	65 Zn	⁷⁰ Ga	73 Ge 32 Ge	75 AS	⁷⁹ Se	80 Br	84 Kr 36 Kr
Potassium	Potassium Calcium	Scandium		Titanium Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
86 Rb	88 38 S r	89 ★	⁹¹ Zr	93 Nb	⁹⁶ Mo	99 Tc	¹⁰¹ Ru	103 Rh	106 Pd 46	108 47 Ag	112 Cd	115 In 49	119 Sn	122 Sb	128 Te	127 53	¹³¹ Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
133 Cs 55	137 Ba 56	¹³⁹ La	179 Hf	¹⁸¹ Ta	184 W	¹⁸⁶ Re	190 OS	192 lr 77	195 Pt	197 79 197	201 Hg	204 TI 81	²⁰⁷ Pb	²⁰⁹ Bi	²¹⁰ Po	210 At	²²² Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
²²³ Fr 87	226 Ra 88	²²⁷ ₈₉ Ac															
Francium	Radium	Actinium			Key												