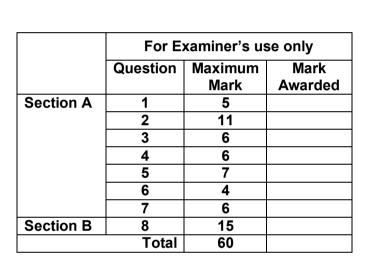
GCSE CHEMISTRY Sample Assessment Materials 101

Candidate Name	Centi	re Nu	mber	Ca	andid	late N	lumb	er

GCSE CHEMISTRY


COMPONENT 2

Applications in Chemistry

FOUNDATION TIER

SAMPLE PAPER

(1 hour 15 minutes)

educ

ADDITIONAL MATERIALS

In addition to this examination paper you will need a resource booklet, a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

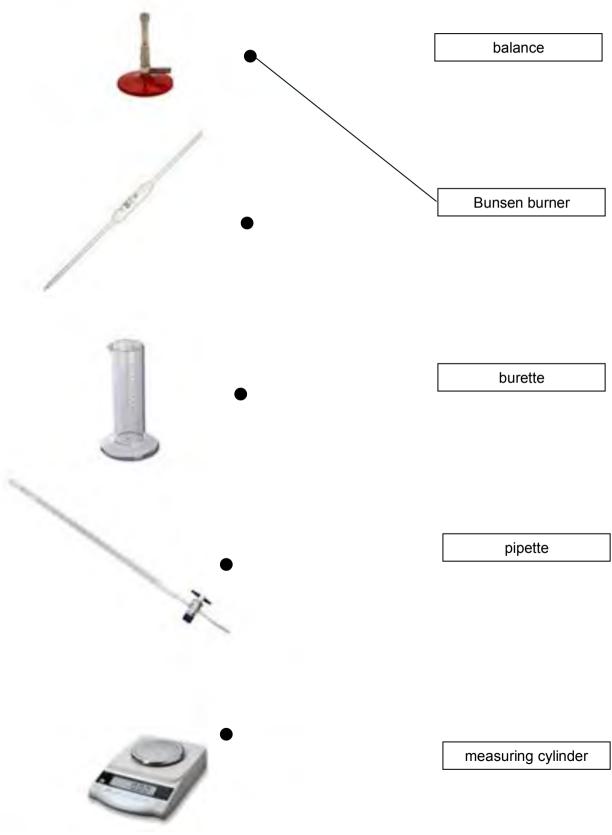
Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

This paper is in two Sections, Section A and Section B.

Section **A**: 45 marks. Answer **all** questions. You are advised to spend about 50 minutes on this section.

Section **B**: 15 marks. Read the article in the resource booklet carefully then answer **all** questions. You are advised to spend about 25 minutes on this section.


The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 7.

SECTION A

Answer all questions.

1 (a) Draw lines to match each diagram below with the correct name of the apparatus. One has been done for you. [2]

(b) Choose a method from the box to answer parts (i) to (iii).

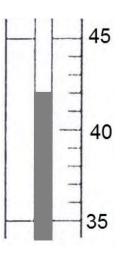
chromatograp	hy distillation	electrolysis	filtration
Name	the method you would use to sep	arate:	
(i)	two liquids (water and ethanol)		[1]
(ii)	the colourings in a food dye		[1]
(iii)	a precipitate from water		[1]
(111)	a precipitate from water		[1]

2. (a) The following table shows the colours of universal indicator at different pH values.

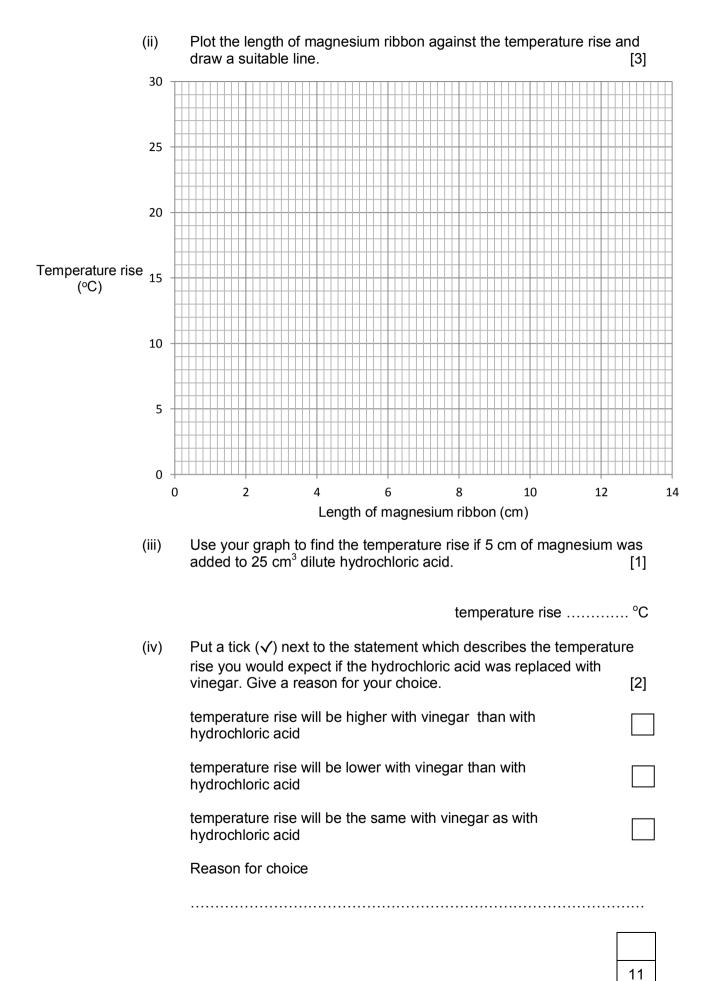
colour	red	orange	yellow	green	blue	navy blue	purple
рН	0-2	3-4	5-6	7	8-9	10-12	13-14

Use this information to help you complete the table below. [3]

Substance	Colour with universal indicator	pH value	Acid, alkali or neutral?
detergent	purple		
distilled water		7	
soap		8	


(b) Different lengths of magnesium ribbon were put into separate beakers each containing 25 cm³ dilute hydrochloric acid and the temperature measured. The initial temperature of the acid in each beaker was 16 °C.

The results are shown in the table below. Two temperatures are missing.


Length of magnesium ribbon (cm)	2	4	6	8	10	12
Final temperature (°C)	20	23	28	33	35	
Initial temperature (°C)	16	16	16	16	16	16
Temperature rise (^o C)	4	7	12	17	19	

(i) Complete the table by using the thermometer reading shown below.[2]

Thermometer reading when 12 cm of magnesium was used.

PMT

3. The diagrams below show the stages in making the compound zinc sulfate by reacting zinc carbonate with dilute sulfuric acid. The diagram showing the apparatus for **Stage 2** is missing.

Stage ⁻	1	Stage 2	Stage 3
	sulphuric acid		colourless /solution
added the mix	s zinc carbonate is to dilute sulfuric acid, ture being lously stirred	<i>Excess</i> zinc carbonate is removed	Colourless solution is left in an evaporating basin at room temperature to obtain white crystals of zinc sulfate
(a)	State what you would	see when excess zinc carbonate	is added. [1]
(b)	State why excess zind	c carbonate is added.	[1]
(c)		ou would use to carry out stage 2 . carbonate on your diagram.	[3]

(d) Put a tick (\checkmark) next to the box that shows the estimated time it would take for **all** the water to evaporate from 25 cm³ of zinc sulfate solution in stage **3**. [1]

1 hour 1 week 1 school term 1 year	1 hour	1 week	1 school term	1 year	
------------------------------------	--------	--------	---------------	--------	--

4. Hydrogen peroxide solution decomposes very slowly at room temperature.

 $H_2O_2(aq) + 2H_2O(l) \longrightarrow O_2(g)$

This reaction can be catalysed using manganese(IV) oxide.

The statement below shows the definition of a catalyst.

"A *catalyst* will change the speed of a chemical reaction but will not be used up during the reaction."

A student carried out an investigation to find out if it is true that a catalyst is not used up in a reaction.

1.50 g of manganese(IV) oxide powder was accurately weighed and put into 20 cm³ of hydrogen peroxide solution. After the reaction had stopped, the reaction mixture was filtered into a pre-weighed filter paper. The filtered manganese(IV) oxide and filter paper was dried in an oven.

The mass readings are shown below.

	Mass (g)
filter paper	1.26
manganese(IV) oxide and filter paper after drying	2.74
recovered manganese(IV) oxide	1.48

(a) Calculate the percentage (%) mass of manganese(IV) oxide recovered to one decimal place. [3]

% mass of manganese(IV) oxide recovered = %

(b) Do you agree with the statement that *'a catalyst is not used up in a reaction'* Give the reason for your decision. [1]

.....

(c)	Suggest why not all of the manganese(IV) oxide was recovered problem could be overcome.	d and how this [2]

5. (a) A compound was dissolved in water and tested as described below. Use the information to complete the table and name the compound.

[3]

Solution of unknown compound	Observation	Conclusion
dilute hydrochloric acid was		
added, the gas produced	limewater turned	
was passed through	milky	
limewater		
a flame test was carried out	an orange flame	

The compound is

(b) A solution contains barium ions. It may also contain magnesium ions.

Use the information below to decide how to remove the barium ions and then test to find if magnesium ions are present. [4]

You are also given a solution of sodium sulfate and a solution of sodium carbonate which you can use.

Compound	Soluble or insoluble?
barium sulfate	insoluble
barium carbonate	insoluble
magnesium sulfate	soluble
magnesium carbonate	insoluble
sodium sulfate	soluble
sodium carbonate	soluble

Method to remove barium ions

Test for magnesium ions

A student measured out 25 cm³ of a sodium carbonate solution. The sodium carbonate solution had a concentration of 1.06 g/dm³.
Calculate the mass of sodium carbonate (Na₂CO₃) that was in 25 cm³ of this solution. Give your answer in units of g and mg.

.....

7. Describe and explain an investigation you would carry out to find the relative positions of copper, iron and magnesium in the reactivity series. Include equations where appropriate.

You are provided with: - solid samples of copper, iron and magnesium - solid samples of copper(II) sulfate, iron(II) sulfate and magnesium sulfate.	[6 QER]

SECTION B

Read the article in the resource booklet and answer **all** the questions that follow.

8.	(a)	Describe the bonding between carbon atoms in diamond. Include a dot and cross diagram in your answer. Details of the structure of diamond are not required.							

(b) (i) Explain why graphene is a good conductor of electricity. [2]
 (ii) Explain why graphite is soft and slippery and can act as a lubricant. [2]
 (iii) Diamond is a year dance alletrone of earbon because the earbon

(iii) Diamond is a very dense allotrope of carbon because the carbon atoms are tightly packed. Calculate the volume of the cube containing carbon atoms in **Diagram 2**. Give the unit. [1]

volume =

[2]

(C)	Determine the molecular formula of the fullerene identified using mass						
	spectroscopy in the article.						
	Show your working.						

molecular formula =

(d) (i) Calculate the specific strength of Kevlar **(Table 1)** and use this value to **estimate** the breaking length. [3]

specific strength kN m/kg

breaking length km

(ii) Explain why carbon nanotubes may eventually replace materials like steel and aluminium in the manufacture of power lines. [2]

.....

POSITIV	EIONS	NEGATIVE IONS Name Formula	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br⁻
Ammonium	NH_4^+	Carbonate	CO3 ²⁻
Barium	Ba ²⁺	Chloride	CI⁻
Calcium	Ca ²⁺	Fluoride	F⁻
Copper(II)	Cu ²⁺	Hydroxide	OH⁻
Hydrogen	H⁺	lodide	I-
Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻
Iron(III)	Fe ³⁺	Oxide	0 ^{2-°}
Lithium	Li⁺	Sulfate	SO4 ²⁻
Magnesium	Mg ²⁺		-
Nickel	Ni ²⁺		
Potassium	K⁺		
Silver	Ag⁺		
Sodium	Na ⁺		
Zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

1.5	Period *	.		N	n	4	2	Q	~					
-	s Block	E.T	Hydrogen	6.94 Li 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr 87 87					
2	- ock			9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	 Lar ele 	* Ac			
						2			45.0 Sc Scandium 21	88.9 Y Yttrium 39	139 La Lanthanum 57	AC ++ AC ++ Actinium 89	 Lanthanoid elements 	Actinoid elements
							47.9 Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72		140 Ce 58	232 Th		
	Key					50.9 Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Pr Praseodynum 59	(231) Pa			
		Key relative		6		52.0 Cr Chromium 24	95.9 Mo Mo Mo ybdenum 42	184 W Tungsten 74		144 Nd Neodymium 60	238 U			
Gre			Ar mass Symbol Name atomic Z number	d Block	54.9 Mn Manganese 25	98.9 TC Technetium 43	186 Re Rhenium 75		(147) Promethum 61	(237) Np				
Group				atomic atomic number Iock	ock	55.8 Fe Iron 26	101 Ru Ruthenium 44	190 Osmium 76		150 Sm Samarium 62	(242) Pu			
						58.9 58.9 58.9 27 27 27 27 27 45 45 45 192 17 77		(153) Eu 63	(243) Am					
						58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	f Block	157 Gd Gaddinum 64	(247) Cm			
						63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		159 Tb Terbium 65	(245) BK			
					•	65.4 Zn 30	Cd Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf			
3			Ļ	10.8 B Boron 5	27.0 Al 13	69.7 Ga Gallium 31	115 In 1ndium 49	204 TI Thallium 81		165 Ho Holmium 67	(254) Es			
4				12.0 14.0 16.0 C C N O O Carbon Nitrogen Oxygen	28.1 31.0 Si P Silicon Phosphous 14 15	72.6 Ge Germanum 32	119 Sin Sin 30	207 Pb Lead 82		167 Er Erbium 68	(253) Fm			
2			рВ			74.9 As Arsenic 33	122 Sb Antimony 51	209 Bismuth 83		169 Tm Thulium 69	(256) Md			
9		p Block			32.1 Sulfur 16	79.0 Selenium 34	128 Te Tellurium 52	(210) PO Polonium 84		173 Yb Ytterbium 70	(254) (257) No Lr			
4	~			19.0 F Fluorine 9	35.5 CI Chlorine	79.9 Bromine 35	127 I fodine 53	At At Astatine 85		175 Lu 71	(257) Lr			
0	1.00	He He	Helium 2	20.2 Neon 10	Ar Argon 18	83.8 Krypton 36	Xenon 54	(222) Rn Radon 86						

GCSE CHEMISTRY Sample Assessment Materials 115