

GCSE MARKING SCHEME

AUTUMN 2022

GCSE MATHEMATICS – COMPONENT 2 (HIGHER TIER) C300UB0-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

PMT

EDUQAS GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

Component 2: Higher Tier	Mark	Comment
1.*(a)(i)		
5	B1	ISW
$\overline{12}$	Ы	15 VV
1.(a)(ii)		
$\frac{18072}{10} \times 7$	N/4	ΓT thesis $2 + 2 + 7$ from (a)(i) provided > 10
$12^{\times 7}$	M1	FT 'their 2 + 3 + 7' from (a)(i) provided > 10
(£)10542	A1	
1.(b)		
$\frac{80}{32}$ (×100) or 2.5 (× 100)	M1	
$\frac{1}{32}$ (*100) of 2.5 (*100)		
250(%)	A1	Mark final answer
		If no marks, award SC1 for an answer of 150(%) (using a profit of £48)
	(5)	
2.*(a)	(0)	
$(650 \times 8 + 750 \times 7 + 850 \times 4 + 950 \times 11)$	M1	(= 24300)
÷ 30	m1	
810 (grams)	A1	
2.(b)		
Valid comment e.g. 'Her answer will be an underestimate.' 'She is using the lowest values so the mean will be too small'.	E1	Allow answers that state that the calculated mean will be smaller or indicate that the lowest values do not represent the groups, e.g. 'Her method will give a smaller mean.' 'Because these values do not represent the entire range.' 'Because she ignored the distribution in each interval.' 'Because she is using the minimum masses making at an unfair estimate.'
	(4)	Do not allow e.g. 'She has used the smallest value in each group.' 'Because these values are the lowest bounds.' 'Because it is not as accurate as the midpoints.' 'It is better to use the midpoints'

3.*(a)		
Valid criticism e.g. 'There are no points above the line.' 'There should be some points above and	E1	Allow e.g. 'She has just joined the first point to the last.' 'It is not through the middle of the points.'
below the line.'		'It is not in between all the points.'
'It does not follow the trend of the data.'		Do not allow e.g. 'The line is in the wrong place.'
- 4.		'It does not go through many points.'
3.(b) No indicated and valid comment e.g. 'Correlation does not imply causation.' or 'There could be another reason such as owning a dog for example would mean you took more exercise.'	E1	Allow e.g. 'There is no relationship between them, it is just a coincidence.' 'Owning a pet has nothing to do with going to the doctors.'
	(2)	
4.* 5000 × 1.02 ⁵ × 1.013 ⁴ oe, si	М3	Method for M3 or M2 may be seen in stages
		M2 for use of $\dots \times 1.02^5$ or $\dots \times 1.013^4$ oe Note: $5000 \times 1.02^5 = 5520.40$ and $5000 \times 1.013^4 = 5265.11$
		M1 for use of × 1.02 or× 1.013 oe Note: 5000 × 1.02 (= 5100) or 5000 × 1.013 (= 5065)
(£) 5813.11 or £5813.10 or (£)5813	A1	CAO A1 only from fully correct working.
	(4)	
5.*(a) 7 000 000 indicated 5.(b)	B1	
$\frac{1}{2}$ × (79+62) × 30 oe	B1	(= 2115)
$\pi(30\div2)^2$	B1	(= 706.858)
$(\frac{1}{2} \times (79 + 62) \times 30 - \pi \times 15^2) \div (\pi \times 15^2)$	M2	dep on at least B1 awarded; FT 'their area of circle' or 'their area of trapezium' for M2 or M1 (= $(2115 - 225\pi) \div 225\pi$)
OR ½ × (79 + 62) × 30 ÷ (π × 15²) – 1		Award M1 for one of the following: • $\frac{1}{2} \times (79 + 62) \times 30 - \pi \times 15^{2.}$ (= 1408.1) • $\frac{1}{2} \times (79 + 62) \times 30 \div (\pi \times 15^{2})$. (= 2.99) • (706.9 : 2115) = 1 : 2.9(9) or 1 : 3
(<i>k</i> =) 1.9(921) si	A1	CAO
(<i>k</i> =) 2	B1	FT 'their 1.99' rounded to 1 sig fig, providing at least M1 previously awarded and a ratio obtained (not for rounding an area). An answer of ($k = 12$ implies the previous A1 if no incorrect working seen e.g. 706.9 : 1408 = 1 : 2 Note: unsupported answers of 1:2 or $k = 2$ or are awarded zero marks
	(7)	

6.*(a) 5x - 2x = 6 - 4 or $3x = 2$ oe $(x =) \frac{2}{3}$, ISW	B1 B1	Allow 0.67 or 0.666 but not 0.66 FT from $ax = 2$, $a \neq 1$ or $3x = b$ accept $\frac{2}{a}$ or $\frac{b}{3}$ but if on FT either simplifies to an integer the answer must be given as an integer. Correct answer implies first B1 unless incorrect working seen. Maximum of 1 mark if not fully correct
6.(b) $4x > 17 + 3$ oe	M1	
<i>x</i> > 5	A1	Mark final answer; no marks for use of "=", unless finally replaced to give $x > 5$ then award M1 A1.
6.(c)		No marks for T&I no marks for an unsupported answer.
Method to eliminate an unknown e.g. equal coefficients and subtraction	M1	Allow one error in one term, not in the equated coefficients if appropriate
or rearranges one equation and substitutes into the other		
Finds one unknown	A1	CAO; $x = 2$, $y = -3$
Finds the other unknown	A1 (7)	FT 'their <i>x</i> ' or 'their <i>y</i> ' used in one of their equations

$7.^{*}$ Uses $EC = 6$ oe correctly in a trigonometric statementS1 $(BC=) \frac{6}{\cos 35}$ or $\frac{6}{\sin (90-35)}$ M2 $(BC=) \frac{6}{\cos 35}$ or $\frac{6}{\sin (90-35)}$ M2 $(BC =) 7.3(246)$ si (perimeter $=) 4 \times 7.3(246)$ siM1 $(Perimeter =) 4 \times 7.3(246)$ si (perimeter $=) 29.2()$ or 29.3 or 29 (cm)A1 FT Their derived BC 'providing S1 previously awarded and their $BC > 6$ $8.(a)$ (b)(6) $8.(a)$ (b)(6) $8.(b)$ All 6 correct points plotted correctly and joined with a smooth curveB2 $8.(b)$ (12 (metres))B1 $8.(c)(i)$ (12 (metres))B1 $8.(c)(ii)$ (15.5 (seconds))B1 $8.(c)(ii)$ (15.5 (metres))B1 $8.(c)(ii)$ (15.5 (metres))B1 $8.(c)(ii)$ (15.5 (metres))B1 $8.(c)(ii)$ (15.5 (metres))B1 $8.(c)(iii)$ (15.5 (metres))B1 $8.(c)(iii)$ (15.5 (metres))B1 $8.(c)(iii)$ (15.5 (metres))B1 $8.(c)(iii)$ (12.5 (metres))B1 $8.(c)(iii)$ (15.5 (metres))B1			
M1 for $\cos 35 = \frac{6}{BC}$ or $\sin(90 - 35) = \frac{6}{BC}$ oe(BC =) 7.3(246) siA1(perimeter =) $4 \times 7.3(246)$ siM1(perimeter =) $29.2()$ or 29.3 or 29 (cm)A1FT 'their derived BC' providing S1 previously awarded and their $BC > 6$ (perimeter =) $29.2()$ or 29.3 or 29 (cm)A1FTTheir derived BC' providing S1 previously awarded and their $BC > 6$ 8.(a)(6)8.(a)B28.(b) All 6 correct points plotted correctly and joined with a smooth curveB28.(c)(ii) 12 (metres)B1 for any two correct8.(c)(iii) 4 (seconds)B18.(c)(iii) 1.5 (seconds)B18.(c)(iii) 1.5 (seconds)B18.(c)(iv) 1.5 (metres)B1A1A1B1A1A1A1B1A1A1A1A1A1B1A1A1A1B1A1B1A1B1A1B1A1B1A1B1A1B1A1B1A1B1A1B1B1A1B1B1B1B1A1B1A1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1 </td <td>Uses <i>EC</i> = 6 oe correctly in a trigonometric</td> <td>S1</td> <td></td>	Uses <i>EC</i> = 6 oe correctly in a trigonometric	S1	
$(BC =) 7.3(246)$ siA1May be implied by a correct expression for the perimeter e.g. $\frac{24}{cos35}$ or $\frac{24}{sin55}$ oe(perimeter =) 4 × 7.3(246) siM1FT their derived BC providing S1 previously awarded and their BC > 6(perimeter =) 29.2() or 29.3 or 29 (cm)A1FT(6)(6)8.(a)(6) $\frac{t}{12}$ 181812(7)(8)B28.(b)All 6 correct points plotted correctly and joined with a smooth curve8.(c)(1)12 (metres)B18.(c)(ii) 12 (metres)B18.(c)(iii) 4 (seconds)B18.(c)(iii) 1.5 (seconds)B18.(c)(iv) 18.75 (metres)B18.(c)(iv) 18.75 (metres)B1 </td <td>$(BC=)\frac{6}{\cos 35}$ or $\frac{6}{\sin (90-35)}$</td> <td>M2</td> <td></td>	$(BC=)\frac{6}{\cos 35}$ or $\frac{6}{\sin (90-35)}$	M2	
$(BC =) 7.3(246)$ siA1perimeter e.g. $\frac{24}{cos35}$ or $\frac{24}{sin55}$ oe $(perimeter =) 4 \times 7.3(246)$ siM1FT their derived BC providing S1 previously awarded and their $BC > 6$ $(perimeter =) 29.2()$ or 29.3 or 29 (cm)A1FT(6)(6)8.(a)(6) $\underline{t 0 1 2 3 4 5}$ h 12 18 18 12 0 -18B28.(b)All 6 correct points plotted correctly and joined with a smooth curveB28.(c)(i) 12 (metres)All 6 correct points plotted correctly and joined with a smooth curveB28.(c)(ii) 12 (metres)B1FT their h' when $t = 0$ 8.(c)(iii) 1.5 (seconds)B1Allow 18.5 to 19 inclusive (from their graph)			M1 for cos35 = $\frac{6}{BC}$ or sin(90 – 35) = $\frac{6}{BC}$ oe
(perimeter =) $4 \times 7.3(246)$ siM1FT 'their derived BC' providing S1 previously awarded and their BC > 6(perimeter =) 29.2() or 29.3 or 29 (cm)A1FT(a)(b)(c)(c) 12 13 2 3 4 (b)All 6 correct points plotted correctly and joined with a smooth curveB2B1 for any two correct $8.(b)$ All 6 correct points plotted correctly and joined with a smooth curveB2Mark intent B1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctly Allow 2 marks here if curve correct even if there is a slip in their table $8.(c)(i)$ 12 (metres)B1FT 'their h' when $t = 0$ $8.(c)(ii)$ 1.5 (seconds)B1Allow 18.5 to 19 inclusive (from their graph)			
awarded and their $BC > 6$ (perimeter =) 29.2() or 29.3 or 29 (cm)A1FT t 012345 t 012345 t 012345 t 012345 t 121818120-18 t	(BC =) 7.3(246) si	A1	perimeter e.g $\frac{21}{\cos 35}$ or $\frac{21}{\sin 55}$ oe
t t	(perimeter =) 4 × 7.3(246) si	M1	
s.(a) t 0 1 2 3 4 5 h 12 18 12 0 -18 $B2$ $B1$ for any two correct $s.(b)$ All 6 correct points plotted correctly and joined with a smooth curve $B2$ Mark intent $s.(b)$ All 6 correct points plotted correctly and joined with a smooth curve $B2$ Mark intent $s.(c)(i)$ 12 (metres) $B1$ $Correct points plotted correct pairs of coordinates or for all of their 6 pairs ofcoordinates plotted correctlyAllow 2 marks here if curve correct even if thereis a slip in their tables.(c)(ii)4 (seconds)B1FT 'their h' when t = 0s.(c)(iii)1.5 (seconds)B1B1s.(c)(iv)18.75 (metres)B1Allow 18.5 to 19 inclusive (from their graph)$	(perimeter =) 29.2() or 29.3 or 29 (cm)	A1	FT
t012345 h 121818120-18B2B1 for any two correct $8.(b)$ All 6 correct points plotted correctly and joined with a smooth curveB2Mark intent B1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctly $8.(c)(i)$ 12 (metres)B1FT 'their <i>h</i> ' when <i>t</i> = 0 $8.(c)(ii)$ 4 (seconds)B1F1 $8.(c)(iii)$ 1.5 (seconds)B1B1 $8.(c)(iv)$ 18.75 (metres)B1Allow 18.5 to 19 inclusive (from their graph)		(6)	
h 12 18 12 0 -18 B2 B1 for any two correct 8.(b) All 6 correct points plotted correctly and joined with a smooth curve All 6 correct points plotted correctly and joined with a smooth curve B2 Mark intent B1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctly Allow 2 marks here if curve correct even if there is a slip in their table 8.(c)(i) 12 (metres) B1 FT 'their h' when t = 0 8.(c)(ii) 4 (seconds) B1 8.(c)(iii) 1.5 (seconds) B1 8.(c)(iv) 18.75 (metres) B1			
All 6 correct points plotted correctly and joined with a smooth curveB2Mark intentB1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctlyB1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctly8.(c)(i) 12 (metres)B1FT 'their <i>h</i> ' when <i>t</i> = 08.(c)(ii) 4 (seconds)B1FT 'their <i>h</i> ' when <i>t</i> = 08.(c)(iii) 1.5 (seconds)B1B18.(c)(iv) 18.75 (metres)B1Allow 18.5 to 19 inclusive (from their graph)		B2	B1 for any two correct
B1 for a smooth curve at least through 4 correct pairs of coordinates or for all of their 6 pairs of coordinates plotted correctlyAllow 2 marks here if curve correct even if there is a slip in their table8.(c)(i) 	All 6 correct points plotted correctly	B2	Mark intent
is a slip in their table $8.(c)(i)$ 12 (metres)B1FT 'their h' when $t = 0$ $8.(c)(ii)$ 4 (seconds)B1 $8.(c)(iii)$ 1.5 (seconds)B1 $8.(c)(iv)$ 18.75 (metres)B1Allow 18.5 to 19 inclusive (from their graph)	and joined with a smooth curve		pairs of coordinates or for all of their 6 pairs of
12 (metres) B1 FT 'their h' when t = 0 8.(c)(ii) B1 B1 8.(c)(iii) B1 B1 8.(c)(iii) B1 B1 8.(c)(iv) B1 B1 18.75 (metres) B1 Allow 18.5 to 19 inclusive (from their graph)			
4 (seconds) B1 8.(c)(iii) 1.5 (seconds) 1.5 (seconds) B1 8.(c)(iv) B1 18.75 (metres) B1		B1	FT 'their h ' when $t = 0$
1.5 (seconds) B1 8.(c)(iv) B1 18.75 (metres) B1 Allow 18.5 to 19 inclusive (from their graph)		B1	
1.5 (seconds) B1 8.(c)(iv) B1 18.75 (metres) B1 Allow 18.5 to 19 inclusive (from their graph)			
18.75 (metres) B1 Allow 18.5 to 19 inclusive (from their graph)		B1	
		B1	Allow 18.5 to 19 inclusive (from their graph)

9.		Multiplications can take place in any order
(Radius of cylinder =) 3 (cm) si	B1	May be implied by e.g. $d = 6$
(Number of cylinders in crate =) 80	B1	May be implied in later working
$\pi \times 3^2 \times 32$	M1	$(288\pi \text{ or } 904.7(7) \text{ to } 904.9 \text{ cm}^3)$
× 0.961	M1	(869.4 to 869.6(0) g) FT 'their derived volume' providing it is a multiple of π . May use 0.000961 (kg/cm ³); allow multiplication by figs 961 if a unit conversion error
× 80	M1	FT 'their 80' \times 'their derived volume or mass'
= 69 552 to 69 569 (g) No indicated (with sight of 69(.) kg or 70 000 g)	A1 A1	CAO FT 'their 69552 to 69569 (g)' providing at least M2 previously awarded and no incorrect conversion to kg seen
Alternative method (Radius of cylinder =) 3 (cm) si	B1	May be implied by e.g. $d = 6$
(Number of cylinders in crate =) 80	B1	May be implied in later working
$\pi \times 3^2 \times 32$	M1	(288π or 904.7(7) to 904.9 cm ³)
× 0.961	М1	(869.4 to 869.6(0) g) FT 'their derived volume' providing it is a multiple of π . May use 0.000961 (kg/cm ³); allow multiplication by figs 961 if a unit conversion error
= 869.5 to 869.7(g)	A1	FT 'their 6 \div 2' and possibly figs 961
		Allow e.g. 870 if correct working seen
70 000 ÷ 80 (= 875 (g))	M1	
No indicated (with sight of 869(.) g and 875 g)	A1	FT 'their 869.5 to 869.7(g)' or 'their 870' providing at least M2 previously awarded
10.	(7)	
(1 – 0.198) × (1 – 0.065) oe, si	M1	0.802×0.935 Allow one error in subtractions.
0.74987 oe, si	A1	CAO; allow 75% following full and correct working
(1 – 0.74987) × 100 oe, si	M1	FT 'their derived 0.74987' providing < 1 and ≠ 0.802 or 0.935; allow for sight of 1 – 0.74987 or 0.25013
25.013 (%)	A1	FT (1 – 'their 0.74987') \times 100 Allow 25% following full and correct working
	(4)	

11. (a) Correct box plot with: Median at 19.4 Lower quartile at 16.8 Upper quartile at 21.0 Left whisker to 15.2 Right whisker to 23.2	В3	B1 for UQ = 21(.0) si; may not be in a box plot B1 for LQ, Median, UQ positioned correctly in a box plot, B1 for correct whiskers
11.(b)(i) Correct indicated and valid explanation e.g. 'The median for group <i>B</i> is lower.' or 'The median (for group <i>A</i> is 19.4 and) for group <i>B</i> is 18.8.'	E1	
 11.(b)(ii) Not correct indicated and valid explanation e.g. 'The lower quartile for <i>B</i> is more than 17 but the lower quartile for <i>A</i> is less than 17.' 	E1	Allow: Not correct and 'Group A had a lower quartile less than 17'
	(5)	
12.		Correct evaluation enough to imply > 0 or < 0; If evaluations not seen then may be implied by e,g, 'too big' or 'too small'; Mark solving $2x^3 + x^2 = 12$ equivalently
One correct evaluation with $1 \le x \le 2$	B1	
Two correct evaluations with $1.55 \le x \le 1.75$ and one > 0, one < 0 si	B1	
Two correct evaluations with $1.65 \le x \le 1.75$ and one > 0, one < 0 si	M1	
1.7	A1 (4)	x $2x^3 + x^2 - 12$ or $2x^3 + x^2$ 1 -9 3 1.1 -8.128 3.872 1.2 -7.104 4.896 1.3 -5.916 6.084 1.4 -4.552 7.448 1.5 -3 9 1.6 -1.248 10.752 1.65 -0.293 11.706 1.7 0.716 12.716 1.8 2.904 14.904 1.9 5.328 17.328 2 8 20 If no marks, award SC2 for a complete method with a final answer of 1.1 from $(2x)^3 + x^2 - 12 = 0$ or $(2x)^3 + x^2 = 12$

265125 (mm)B1Max length + max length attemptedS1Allow for a + b where 2.85 < a ≤ 2.855 and 1.90 < b ≤ 1.905 . May be in cm.2.855 + 1.905 OR 2.85 + 1.90 + 0.01M1May be in cm; implies S14.76 (m)A1CAO4.76 (m)(4)4.76 (m)(4)4.76 (m)B3B1 for each pair of branches correct4.76 (m)A1Correct tree diagram e.g.B3B1 for each pair of branches correct $\frac{12}{20}$ R $\frac{12}{20}$ R $\frac{12}{20}$ R $\frac{12}{21}$ R $\frac{5}{20}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ R $\frac{13}{21}$ Y $\frac{14}{20}$ R $\frac{14}{20}$ Check tree diagram $\frac{14}{20}$ e, ISW A1FT 'their probabilities' for M2 or M1, providing at least B1 awarded in (a)M1 for sight of one correct product $\frac{123}{420}$ or $\frac{41}{140}$ oe, ISW	13.(a)			
13.(b) Max length + max length attemptedS1Allow for a + b where 2.85 < a ≤ 2.855 and 1.90 < b ≤ 1.905 . May be in cm.2.855 + 1.905 OR 2.85 + 1.90 + 0.01M1May be in cm; implies S14.76 (m)A1CAO(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(5)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(5)(4) <td col<="" td=""><td>2651.25 (mm)</td><td>B1</td><td></td></td>	<td>2651.25 (mm)</td> <td>B1</td> <td></td>	2651.25 (mm)	B1	
Max length + max length attemptedS1Allow for a + b where 2.85 < a ≤ 2.855 and 1.90 < b ≤ 1.905 . May be in cm.2.855 + 1.905 OR 2.85 + 1.90 + 0.01M1May be in cm; implies S14.76 (m)A1CAO(4)(4)14.(a)(a)Correct tree diagram e.g.B3B1 for each pair of branches correct $\frac{9}{20}$ R $\frac{12}{20}$ R $\frac{12}{20}$ R $\frac{13}{21}$ Y $\frac{6}{20}$ Y $\frac{13}{21}$ Y $\frac{12}{20}$ R $\frac{13}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ Y $\frac{13}{21}$ Y $\frac{14}{20}$ or $\frac{11}{140}$ oe, ISWA1Check tree diagram 123 or $\frac{41}{140}$ oe, ISWA1FT 'their tree diagram'	13.(b)	Τ		
4.76 (m) A1 CAO A1 CAO (4) (4) Correct tree diagram e.g. B3 B1 for each pair of branches correct Allow equivalent fractions in all cases. $\frac{12}{20}$ R $\frac{13}{21}$ Y $\frac{12}{21}$ R $\frac{13}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{14}$ Y $\frac{12}{140}$ oe, $1SW$ A1 FT their tree diagram '	Max length + max length attempted	S1		
14.(a) (4) Correct tree diagram e.g. B3 B1 for each pair of branches correct Allow equivalent fractions in all cases. $\frac{12}{20}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{12}{21}$	2.855 + 1.905 OR 2.85 + 1.90 + 0.01	M1	May be in cm; implies S1	
14.(a) Correct tree diagram e.g.B3B1 for each pair of branches correct $\frac{12}{20}$ RAllow equivalent fractions in all cases. $\frac{9}{20}$ R $\frac{13}{21}$ $\frac{6}{20}$ R $\frac{13}{21}$ $\frac{6}{20}$ R $\frac{13}{21}$ $\frac{12}{21}$ R $\frac{9}{21}$ Y $\frac{12}{21}$ Y $\frac{12}{21}$ R $\frac{6}{20}$ $\frac{13}{21}$ Y $\frac{12}{21}$ $\frac{6}{20}$ $\frac{12}{21}$ $\frac{6}{20}$ $\frac{12}{21}$ Y $\frac{12}{21}$ $\frac{14(b)}{(20 \times 13)^2 + (\frac{5}{20} \times \frac{9}{21}) \circ e}$ $\frac{123}{20} \circ r \frac{41}{140} \circ e, ISW$ M2Check tree diagramK1FT 'their tree diagram'	4.76 (m)	A1	CAO	
Correct tree diagram e.g. B3 B1 for each pair of branches correct Allow equivalent fractions in all cases. Allow equivalent fractions in all cases. Allow equivalent fractions in all cases. Allow equivalent fractions in all cases. $\frac{9}{20}$ $\frac{9}{20}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{13}{21}$ $\frac{12}{21}$ $\frac{9}{21}$ $\frac{12}{21}$ $\frac{9}{21}$ $\frac{12}{21}$ $\frac{9}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{21}$ $\frac{12}{20}$ or $\frac{41}{140}$ oe, ISW $\frac{123}{20}$ or $\frac{41}{140}$ oe, ISW $\frac{123}{20}$ or $\frac{41}{140}$ oe, ISW $\frac{123}{21}$ $\frac{123}{140}$ oe, ISW $\frac{123}{140}$ $\frac{123}{140}$ oe, ISW $\frac{123}{140}$ $\frac{123}{140}$ oe, ISW $\frac{123}{140}$ \frac		(4)		
Allow equivalent fractions in all cases. Allow equivalent fractions in allow equivalent fractions in allow equiv	14.(a)			
$\frac{12}{20}$ $\frac{3}{8}$ $\frac{9}{20}$ $\frac{9}{20}$ $\frac{13}{13}$ $\frac{13}{21}$ $\frac{12}{21}$ $\frac{9}{21}$ $\frac{12}{21}$ $\frac{12}$	Correct tree diagram e.g.	B3	B1 for each pair of branches correct	
$ \begin{pmatrix} \frac{6}{20} \times \frac{13}{21} \end{pmatrix} + \begin{pmatrix} \frac{5}{20} \times \frac{9}{21} \end{pmatrix} oe $ $ M2 $ $ FT 'their probabilities' for M2 or M1, providing at least B1 awarded in (a) $ $ M1 \text{ for sight of one correct product} $ $ FT 'their tree diagram' $ $ FT 'their tree diagram' $	$G = \begin{bmatrix} \frac{12}{20} \\ 8 \\ \frac{8}{20} \end{bmatrix} Y$ $G = \begin{bmatrix} \frac{13}{21} \\ \frac{6}{20} \\ \frac{6}{20} \end{bmatrix} R$ $R = \begin{bmatrix} \frac{13}{21} \\ \frac{13}{21} \\ \frac{13}{21} \\ \frac{13}{21} \end{bmatrix} Y$ $F = \begin{bmatrix} \frac{13}{21} \\ \frac{8}{21} \\ \frac{5}{20} \end{bmatrix} Y$ $F = \begin{bmatrix} \frac{13}{21} \\ \frac{13}{21} \\ \frac{8}{21} \\ \frac{13}{21} \\ \frac{13}{21$		Allow equivalent fractions in all cases.	
$\frac{123}{420} \text{ or } \frac{41}{140} \text{ oe, ISW}$ A1	14.(b) $\left(\frac{6}{22} \times \frac{13}{24}\right) + \left(\frac{5}{22} \times \frac{9}{24}\right)$ oe	M2	FT 'their probabilities' for M2 or M1, providing at	
$\frac{123}{420} \text{ or } \frac{41}{140} \text{ oe, ISW} $ A1 FT 'their tree diagram'	$(20 \ 21) \ (20 \ 21)^{-1}$			
			M1 for sight of one correct product	
	$\frac{123}{420}$ or $\frac{41}{140}$ oe, ISW	A1	FT 'their tree diagram'	
		(6)		

15.(a)		
$2x(3x+2)+4\times 2$ or $2(2x+4)+3x(2x)$	B1	
or $2 \times 4 + 2x \times 2 + 2x \times 3x$		
$6x^2 + 4x + 8 = 10$ or better	M1	
6x + 4x + 8 = 10 of better		
$6x^2 + 4x - 2 = 0$ leading to $3x^2 + 2x - 1 = 0$	A1	
15.(b)		The work for M2 A1 may be seen in (a). Allow the
		marks if this is the case.
(3x-1)(x+1) = 0	M2	Allow '= 0' to be omitted
		If not M2, award M1 for $(3x1)(x1) = 0$
1		
$x = \frac{1}{3}$	A1	Strict FT from 'their pair of brackets' provided equivalent level of difficulty, with at least one
		answer a positive fraction;
		ignore any negative solution if stated
Correct perimeter calculation or expression		FT 'their x ' providing at least M1 previously
e.g.		awarded and $x > 0$. Also, if M0 previously
$\frac{2}{3}$ +4+1+2+ $\frac{2}{3}$ +1+4+2 oe or	M1	
5 5		awarded, allow the use of $x = \frac{1}{3}$ (from calculator
2x+4+3x+2+2x+3x+4+2 or $10x + 12$ oe		use) for this M1 and possible A1.
$15\frac{1}{3}$ (m) oe	A1	FT
Alternative method:		The work for M2 A1 may be seen in (a). Allow the
		marks if this is the case.
$(x =) \frac{-2 \pm \sqrt{2^2 - 4(3)(-1)}}{2(3)}$	М1	Substitution into the formula must be seen for
2(3)		M1, otherwise award M0 M0 A0.
$2 + \sqrt{16}$		
$(x=)\frac{-2\pm\sqrt{16}}{6}$	<i>m</i> 1	Can be implied from at least one correct value of
		<i>x</i> evaluated.
$x = \frac{l}{3}$	A1	ignore any negative solution if stated
د		
Correct perimeter calculation or expression		
e.g.		
$\frac{2}{3}$ +4+1+2+ $\frac{2}{3}$ +1+4+2 oe or		FT 'their x' providing M1 previously awarded and
3 3 $2x+4+3x+2+2x+3x+4+2$ or $10x + 12$ oe	M1	
		$x > 0$ or allow $x = \frac{1}{3}$ without working.
$15\frac{1}{3}$ (m) oe	A1	FT
	(8)	

	1	T1
16.(a)		
$\mathbf{a} + \frac{1}{2}\mathbf{c}$	B1	
16.(b)		
$\frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{c} \text{ or } \frac{1}{2}(\mathbf{a} + \frac{1}{2}\mathbf{c})$	B1	FT 'their $\mathbf{a} + \frac{1}{2} \mathbf{c}$ ' from (a)
16.(c)		
$\frac{1}{2}\mathbf{a} - \frac{3}{4}\mathbf{c}$	B2	FT 'their OE '
		B1 for $-\mathbf{c} + \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{c}$ oe
	(4)	
17. $\sqrt{56^2 + 33^2 + 72^2}$ or	M2	M1 for $DF^2 = 56^2 + 33^2 + 72^2$ OR
$\sqrt{56^2 + 33^2} (= 65)$ and $\sqrt{65^2 + 72^2}$ or		for one correct application of Pythagoras in 2D
$\sqrt{72^2 + 56^2} (= \sqrt{8320} = 8\sqrt{130})$ and		e.g. $\sqrt{56^2 + 33^2}$ or $\sqrt{72^2 + 56^2}$ or $\sqrt{72^2 + 33^2}$;
		implied by finding e.g. $DB = 65$
$\sqrt{8320+33^2}$ or		
$\sqrt{72^2 + 33^2} (= \sqrt{6273} = 3\sqrt{697}$ and		
$\sqrt{6273+56^2}$		
97 (cm)	A1	Allow 96.98 to 97 from earlier rounding
	(3)	
18.(a)(i) Reflection in <i>y</i> -axis	B1	Ignore coordinates for this mark; graph must be in 1st quadrant, starting at origin and ending at a point on the <i>x</i> -axis
Correct coordinates seen or scale marked	B1	<i>A</i> (3, 0) and <i>B</i> (1, 1)
18.(a)(ii)		
Translation through $\begin{pmatrix} 0\\k \end{pmatrix}$ where $k > 0$	B1	Ignore coordinates for this mark; graph must be in 2nd quadrant, but mark intent for the end points to have the same <i>y</i> -coordinate
Correct coordinates seen or scale marked	B1	<i>A</i> (–3, 2) and <i>B</i> (–1, 3)
18.(b)	†	
<i>C</i> (17,0)	B1	Allow for sight of $x = 17$ provided $y = 0$ is not contradicted; may be seen on diagram Do not allow for 17 alone or c = 17
	(5)	
	(0)	

19.		
An explicit calculation for $\sin BCA$ e.g.		
$\sin BCA = 7 \times \frac{\sin 61}{9}$	M2	M1 for any correct implicit form e.g.
9		$\frac{\sin BCA}{7} = \frac{\sin 61}{9}$
		$\frac{1}{7} = \frac{9}{9}$
<i>BCA</i> = 42.86 si	A1	Accept 43
(<i>B</i> Ĉ <i>D</i> = 180 – 42.86 =)	B1	FT 'their 42.8 to 43' providing at least M1
Answer in range 137.1° to 137.2° inclusive		previously awarded. Accept 137 following complete working; degree
		symbol may be omitted
20 (0)	(4)	
20.(a) 55 4 a ²		
$\frac{55}{360} \times \pi \times 12^2 \text{ oe}$	B1	
$\frac{1}{2}$ × 12 ² × sin55 oe	B1	
$\frac{55}{360} \times \pi \times 12^2 - \frac{1}{2} \times 12^2 \times \sin 55 \text{ or better}$	M1	(= 22π – 72sin55);
		FT their difference of areas providing at least B1 previously awarded
10.1(36)	A1	CAO
		Accept answers in the range 10.1 to 10.15;
20.(b)		accept 10 following correct working
$\sqrt{12^2 + 12^2 - 2(12)(12)\cos 55}$ oe OR	M2	M1 for sight of $12^2 + 12^2 - 2(12)(12)\cos 55$ oe OR
12sin(55) sin(62.5) OR 2(12sin(27.5))		$\frac{[]}{\sin(55)} = \frac{12}{\sin(62.5)}$ oe OR $\sin(27.5) = \frac{\frac{1}{2}[]}{12}$ oe
sin(62.5)		$\frac{1}{\sin(55)} = \frac{1}{\sin(62.5)}$ de OR $\sin(27.5) = \frac{1}{12}$ de
11(.0819)	A1	
$\frac{11}{3}\pi$ oe	B2	B1 for $\frac{55}{360} \times 2 \times \pi \times 12$ oe
3 * 00	DZ	360 260
22.6(01)	B1	FT providing at least M1 B1 previously awarded
	(10)	

21.(a) $y = \frac{x+1}{4}$ leading to $4y-1=x$ or $x = \frac{y+1}{4}$ leading to $4x = y+1$	M1	Changes the subject fully or swops the variables and requires one step only to change the subject; must be derived not found from the given equation; allow other variables e.g. $h =$
$h^{-1}(x) = 4x - 1$	A1	Allow $y = 4x - 1$
$2x^2 = 4x - 1$ leading to $2x^2 - 4x + 1 = 0$	A1	
$\frac{21.(b)}{\frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(1)}}{2(2)}}$ or better	M1	Allow if this work seen in (a) Substitution into the formula must be seen for M1, otherwise award M0 A0. Allow one slip in substitution but not in the formula If completing the square used award for sight of $2(x - 1)^2 \pm$
$\frac{4\pm\sqrt{8}}{4}$ oe, si	A1	Implied by 1.70710, 0.29289
1.71, 0.29	B1	
	(6)	
22.(a) Reasonable tangent drawn at $t = 3.5$	S1	
Calculates <u>vertical diff</u> horizontal diff	M1	FT 'their tangent' provided S1 awarded
Correct gradient	A1	FT 'their <u>vertical diff</u> '; must be negative
22.(b)		
Correct calculation for the area using 3 trapezia and 2 triangles oe e.g. $\frac{1}{2} \times (1) \times 15 + \frac{1}{2} \times (1) \times (15 + 35) + \frac{1}{2} \times (1) \times (35 + 32)$ $+ \frac{1}{2} \times (1) \times (32 + 25) + \frac{1}{2} \times (1) \times 25$	М3	Allow 14 to 15 and 24 to 25 for v at t =1 and t=4 M2 for a correct calculation with one error (possibly repeated) in a v value or M1 for a sum of 5 areas using strips of equal width with at most 2 errors
107 (metres)	A1	FT Accept answer in range 105 to 109 inclusive with working; ignore any units if stated
	(7)	