Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3300U10-1

MONDAY, 8 NOVEMBER 2021 - MORNING

MATHEMATICS UNIT 1: NON-CALCULATOR FOUNDATION TIER

1 hour 25 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for all work written on the additional page.

Take π as 3·14.

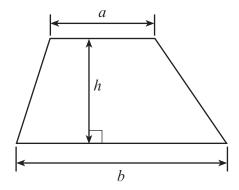
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.


In question **9**, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	6	
2.	2	
3.	3	
4.	2	
5.	4	
6.	2	
7.	2	
8.	3	
9.	6	
10.	5	
11.	3	
12.	3	
13.	2	
14.	3	
15.	5	
16.	3	
17.	3	
18.	3	
Total	60	

Formula List – Foundation Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

PMT

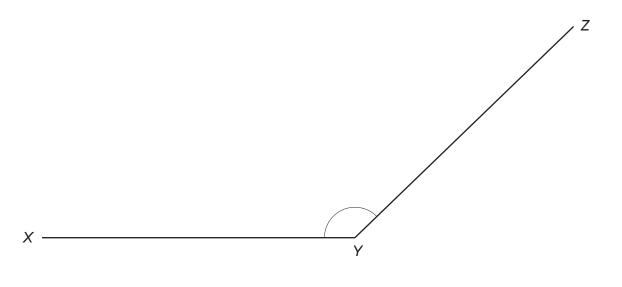
(a)	Write 95 048 in words.	[1]
(b)	Find the sum of 872 and 59.	[1]
(c)	Multiply 250 by 5.	[1]
(d)	Work out $\frac{1}{3}$ of 624.	[1]
(e)	Write down all the factors of 18.	[2]
	The factors of 18 are	

© WJEC CBAC Ltd. (3300U10-1)


3300U101 03

Turn over.

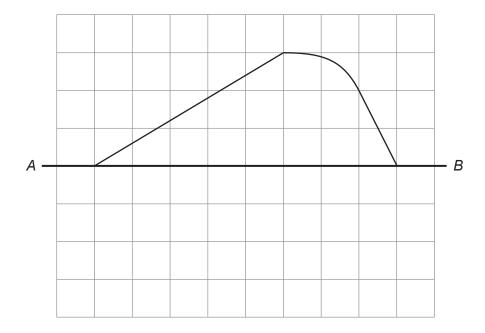
2. (a) Measure the length of the side *AB* of this triangle. Write your answer in millimetres.


[1]

AB = mm

(b) Measure and write down the size of \widehat{XYZ} .

Examiner only


PMT

(a)			nese num ect answe		oth a squa	are numb	er and an	even nun	nber?	[1]	
			2	9	12	16	17				
(b)	Write	75% as a	fraction i	n its lowe	est terms.					[1]	
	Write down the mode of these numbers.										
(c)	Write	down the	mode of	these nui	mbers.					[1]	

Mode is

4. Draw a reflection of this shape in the line AB.

[2]

© WJEC CBAC Ltd.

(3300U10-1)

Turn over.

3300U101

. (a)	The mass of 1 litre of water is 1kg. What is the mass of 4·3 litres of water?	Exa
	Write your answer in grams.	[2]
	Mass = g	
(b)	A rope is 3 m long. It is cut into 6 equal pieces.	
	What is the length of each piece of rope? Write your answer in centimetres.	[2]
	Length =cm	

Examiner only

PMT

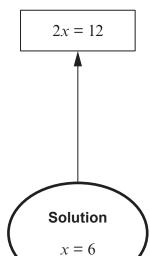
6.	Meic has a bag of 20 coloured balls.
	14 of the balls are yellow, 4 are blue and the rest are red
	Meic chooses a ball at random from his bag.

On the probability scale below, mark the points **A** and **B** where:

- **A** is the probability of Meic choosing a yellow ball, **B** is the probability of Meic choosing a green ball.

[2]

• • • • •		 			 			• • • •			 	 	 			 					• • • •		 	 		 	 	 		 	
• • • • •	• • • •	 	• • • •	• • • •	 • • • • •	• • • •	• • • • •	• • • •	• • • • •	• • • • •	 	 • • • • •	 	• • • •	• • • •	 • • • • •	• • • •	• • • •	• • • •	• • • • •	• • • •	• • • • •	 • • • •	 	• • • •	 	 • • • •	 	• • • • •	 	 • • •
• • • • •		 			 						 	 	 			 							 	 		 	 	 		 	


Examiner only

PMT

7. The solution to three of the following equations is x = 6.

For example, the solution to the equation 2x = 12 is x = 6. The solution has already been matched to this equation with an arrow.

Match the solution, x = 6, to the **other two equations** for which it is the correct solution. [2]

x - 9 = 3

26 = 4x

x + 3 = 8

x - 6 = 0

18 - x = 2

9x = 56

98 + x = 104

Space for working:

PMT

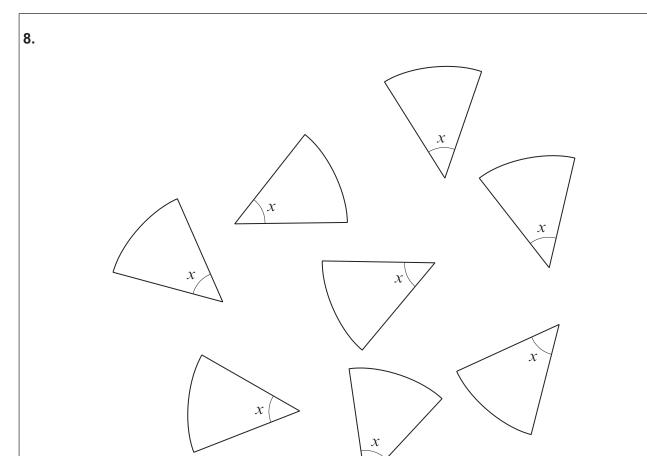


Diagram not drawn to scale

Eight identical sectors of a circle fit together to make a complete circle.

Calculate the value of <i>x</i> .	[3]
	· · · · · · · · · · · · · · · · · · ·

x =

rectangle has length 15 cm and width 7 cm.	
square has the same perimeter as this rectangle.	
alculate the length of a side of the square. ou must show all your working.	[4 + 2 OCW]

0.	(a)	Calculate the size of angle x in the right-angled triangle shown below.	[2]	Exami only
		37° Diagram not drawn to scale		
	(b)	ABCD is a quadrilateral. BE is a straight line. Calculate the size of angles a and b .	[3]	
		C 82° B		
		129° A		
		Diagram not drawn to scale		
		a =° b =°		

Circle	e the correct answer t	o complete e	ach of the foll	owing stateme	ents.	Exa
(a)	$\frac{1}{3}$ of $\frac{1}{3}$ is equal to					[1]
	<u>2</u> 3	<u>2</u>	<u>1</u>	<u>1</u> 9	<u>2</u> 9	
(b)	0·02 × 0·8 is equal t	ю				[1]
	0.016	0·16	1.6	0·4	4	
(c)	1·5% can be written	as				[1]
	1.5 ¹⁰⁰	0.15	0.015	0·105	1·5 ¹⁰	
(a)		_	Form.			[1]
(b)	Calculate the value Give your answer as	of 3 ³ ÷ 2 ² . s a decimal.				[2]
	(a) (b)	(a) $\frac{1}{3}$ of $\frac{1}{3}$ is equal to $\frac{2}{3}$ (b) 0.02×0.8 is equal to 0.016 (c) 1.5% can be written 1.5^{100} (a) Calculate the value Give your answer in	(a) $\frac{1}{3}$ of $\frac{1}{3}$ is equal to $\frac{2}{3}$ $\frac{2}{6}$ (b) 0.02×0.8 is equal to 0.016 0.016 (c) 1.5% can be written as 1.5^{100} 0.15 (a) Calculate the value of $\frac{2}{5} \times \frac{1}{4}$. Give your answer in its simplest the same of $\frac{2}{5} \times \frac{1}{4}$.	(a) $\frac{1}{3}$ of $\frac{1}{3}$ is equal to $\frac{2}{3} \qquad \frac{2}{6} \qquad \frac{1}{6}$ (b) 0.02×0.8 is equal to $0.016 \qquad 0.16 \qquad 1.6$ (c) 1.5% can be written as $1.5^{100} \qquad 0.15 \qquad 0.015$ (a) Calculate the value of $\frac{2}{5} \times \frac{1}{4}$. Give your answer in its simplest form.	(a) $\frac{1}{3}$ of $\frac{1}{3}$ is equal to $\frac{2}{3}$ $\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}{9}$ (b) 0.02×0.8 is equal to 0.016 0.16 1.6 0.4 (c) 1.5% can be written as 1.5^{100} 0.15 0.015 0.105 (a) Calculate the value of $\frac{2}{5} \times \frac{1}{4}$. Give your answer in its simplest form.	$\frac{2}{3} \qquad \frac{2}{6} \qquad \frac{1}{6} \qquad \frac{1}{9} \qquad \frac{2}{9}$ (b) 0.02×0.8 is equal to $0.016 \qquad 0.16 \qquad 1.6 \qquad 0.4 \qquad 4$ (c) 1.5% can be written as $1.5^{100} \qquad 0.15 \qquad 0.015 \qquad 0.105 \qquad 1.5^{10}$ (a) Calculate the value of $\frac{2}{5} \times \frac{1}{4}$. Give your answer in its simplest form.

		Exa	amine
13.	A cuboid measures 5 cm by 3 cm by 2 cm.		only
	Calculate the volume of the cuboid. Give your answer in cm ³ .	[2]	
	Volume = cm ³		
14.	A number n is added to the square root of 81. The answer is equal to 7 squared.		
	What is the value of <i>n</i> ?	[3]	
	<i>n</i> =		

Some letters are made using only curved lines e.g. S. Six cards spell out the name BANGOR. B A N G O R In a game, the six cards are placed in a bag. One card is chosen at random. The letter on the card is noted and the card is returned to the bag. If the card has a letter on it that is made using only straight lines, the player gains 10 points. A card with any other type of letter gains no points. Leah plays the game 24 times. Do you expect Leah to score a total of 100 points? You must show all your working. [5]
In a game, the six cards are placed in a bag. One card is chosen at random. The letter on the card is noted and the card is returned to the bag. If the card has a letter on it that is made using only straight lines, the player gains 10 points. A card with any other type of letter gains no points. Leah plays the game 24 times. Do you expect Leah to score a total of 100 points?
One card is chosen at random. The letter on the card is noted and the card is returned to the bag. If the card has a letter on it that is made using only straight lines, the player gains 10 points. A card with any other type of letter gains no points. Leah plays the game 24 times. Do you expect Leah to score a total of 100 points?
A card with any other type of letter gains no points. Leah plays the game 24 times. Do you expect Leah to score a total of 100 points?
Do you expect Leah to score a total of 100 points?
Do you expect Leah to score a total of 100 points? You must show all your working. [5]
[J]

© WJEC CBAC Ltd.

(3300U10-1)

	AB and CD are parallel.	Examin only
	$A \xrightarrow{(4x+5)^{\circ}} B$	
	$C \longrightarrow D$	
	/ Diagram not drawn to scale	
	Calculate the value of <i>x</i> . [3]	
7.	Write down four positive whole numbers in the boxes below so that: • the range of the numbers is 6, • the mean of the numbers is 5, • the median of the numbers is 4.	
7.	 the range of the numbers is 6, the mean of the numbers is 5, the median of the numbers is 4. 	
7.	 the range of the numbers is 6, the mean of the numbers is 5, the median of the numbers is 4. 	
7.	 the range of the numbers is 6, the mean of the numbers is 5, the median of the numbers is 4. 	
7.	 the range of the numbers is 6, the mean of the numbers is 5, the median of the numbers is 4. 	
7.	 the range of the numbers is 6, the mean of the numbers is 5, the median of the numbers is 4. 	

18.	A car travels 100 miles in 2 hours and 30 minutes. Calculate its average speed in miles per hour. [3]	Examiner only
	[6]	
	END OF PAPER	
	END OF PAPER	

© WJEC CBAC Ltd.

(3300U10-1)

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

(3300U10-1)

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

