

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 4MA1_2H_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)

- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

· With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from Questions 2, 5, 7, 12c, 17, 18 and 19 the correct answer, unless clearly obtained by an incorrect method, should be taken

to imply a correct method

	Q	Working	Answer	Mark	Notes	
1	(a)		9	1	B1	allow 39
	(b)		21	1	B1	allow 5 ²¹
	(c)	$8+2-p=6$ oe eg $8+2=6+p$ or $7^{8+2-p}=7^6$ oe		2	M1	(or embedded eg $8 + 2 = 10$, $10 - 4 = 6$)
		Correct answer scores full marks (unless from obvious incorrect working)	4		A1	allow 7 ⁴
						Total 4 mark

2	$4 \times (5 - x)$ or $5 \times (2x - 1)$ or $20 - 4x$ or $10x - 5$ oe	or		4	M1	for setting up a correct algebraic expression for area A or area B (could be seen as part of an equation) (condone lack of brackets for multiplying if meaning is clear for this mark only)
	one from: 4(5-x) = 20-4x or $2 \times 4(5-x) = 40-8x$ or $0.5 \times 4(5-x) = 10-2x$ oe	and one from: 5(2x-1) = 10x - 5 or $2 \times 5(2x-1) = 20x - 10$ or $0.5 \times 5(2x-1) = 5x - 2.5$ oe			M1	for expanding 2 sets of brackets correctly (one for each shape) [allow ×2 or ÷2 for the wrong shape for this mark] Need not be in an equation at this stage.
	eg 10x + 8x = 40 + 5 or -5 - 40 = -10x - 8x or 18x = 45 or -45 = -18x or 4x + 5x = 20 + 2.5 oe Working required		2.5		M1	for a <u>correct</u> equation with terms in <i>x</i> on one side and number terms the other side oe dep on M1
						Total 4 marks

	()		2.1	1	D1 21/70
3	(a)		31		B1 31/70
			$\overline{70}$		Accept 0.44(28571) or
			, 0		44.(2)%
	(b)	$4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6 (= 1488)$		4	M2 for at least 4 correct products added
	` ′	, , ,			(need not be evaluated)
		or			
					If not M2 then award:
		24 + 168 + 380 + 700 + 216 (= 1488)			
					(M1 for consistent use of value within
					interval (including end points) for at least
					4 products which must be added
					4 products which must be added
					or
					correct midpoints used for at least 4
					products and not added)
		$4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6$ oe			M1 dep on at least M1
		70			
		eg '1488' ÷ 70			Allow division by their Σf provided
		75			addition or total under column seen
		Correct answer scores full marks (unless from obvious	21.26		A1 awrt 21.26
		incorrect working)			accept 21.3
					1
					Total 5 marks
					1 otal 5 marks

4 (a)	$\begin{array}{ c c c c c c }\hline 45 & \text{or} & 20 & \text{or} & 36 & \text{or} & 20 & \text{oe} \\\hline 2.25 & \text{or} & 0.44(44) & \text{or} & 1.8 & \text{or} & 0.55(55)\\\hline \end{array}$		2	M1 for a correct scale factor, accept ratio notation eg 45 : 20
	Correct answer scores full marks (unless from obvious incorrect working)	81		A1
(b)	$54 \div `2.25' \text{ or } 54 \times `0.44(44)' \text{ oe or}$ $36 \times \frac{54}{'81'}$		2	M1 can ft if M1 scored in (a)
	Correct answer scores full marks (unless from obvious incorrect working)	24		A1
				Total 4 marks

5	$(5-2) \times 180 - 112 - 102 - 96 (= 230)$ oe eg		5	M1
	540-112-102-96 (= 230)			
	or 360 - (180 - 112) - (180 - 102) - (180 - 96)			
	(=360-68-78-104=360-230=130) oe			
	$\frac{540 - 112 - 102 - 96}{2} (= 115) \text{ or } (130) \div 2 (= 65)$			M1 dep on previous mark
	= (= 115) or '130' ÷ 2 (= 65)			
	$\frac{180 \times (8-2)}{9} (= 135)$			M1 indep
	8 (-133)			
	or			
	$180 - (360 \div 8) (= 135)$			260
	or			Withhold the mark for $\frac{360}{8}$ (= 45) if
	$\frac{360}{8}$ (= 45) as exterior angle of octagon			<u> </u>
	0			shown as an interior angle
	360 – '115' – '135'			M1
	or			
	'65' + '45'			
	Working required	110		A1 dep on M1
				Total 5 marks

6	$12 \times 2.45 = 29.4$ or $21 \div 12 = 1.75$		3	M1
	'29.4'-21			M1 or an answer of 140(%)
	$\frac{29.4 - 21}{21} \times 100 \text{ oe or}$			
	$\frac{21}{2.45 - 1.75'} \times 100 \text{ oe or}$			
	'1.75'			
	$(\frac{'29.4'-21}{12}) \div '1.75' \times 100 \text{ oe or}$			
	$(\frac{2.45}{1.75} \times 100) - 100 \text{ oe}$			
	1.75			
	Correct answer scores full marks (unless from	40		A1
	obvious incorrect working)			
				Total 2 manha
				Total 3 marks

					,
7	$\frac{4.5}{100} \times 25\ 000\ (=1125)\ \mathbf{or}$		4	M1 finding 4.5% or 104.5% of 25 000	M2 for $1.045^3 \times 25000$
				(allow for 3 × 0.045 × 25 000 oe)	(=28 529.(15313))
	$\frac{104.5}{100} \times 25000 (= 26125)$ or			or	
				the total interest for T bank	
	$1150 \times 3 \ (= 3450) \ \mathbf{or}$			or	
	25 000 + 1150 × 3 (= 28 450)			the total amount gained for T bank	
	(allow $\frac{3 \times 4.5}{100} \times 25000 (= 3375)$ for this mark)				
	$\frac{4.5}{100}$ × (25 000 + '1125') (= 1175.625 or 1175 or 1176) and			M1 completing the interest for C bank	
	$\frac{4.5}{100}$ × (25 000 + '1125' + '1175.625') (= 1228.529)			or	
	or 104.5			completing the total	
	$\frac{104.5}{100} \times 26125 (= 27300.625)$ and $\frac{104.5}{100} \times 27300.625 (= 28529.15)$			amount for C bank	
	'1125' + '1176' + '1229' (= 3530) or			M1 for total interest for C	C bank and total
	'28 529' - 25 000 (=3529) and 3 × 1150 (= 3450)			interest for T bank or	
	unu 5 - 1150 (5450)			total amount for C bank a	and total amount for
	or			T bank	
	'28 529' and 25 000 + '3450' (= 28 450)				
	Working required	79 or		A1 dep on M2	
		80		Allow 79 - 80	
					Total 4 marks

8	(a)		1	1	B1
	(b)(i)	$(x\pm 4)(x\pm 9) (= 0)$		2	M1 or $(x + a)(x + b)$ where $ab = -36$ or
					a+b=-5
		Correct answer scores full marks (unless from	(x+4)(x-9)		A1 (isw if they also solve the equation in
		obvious incorrect working)			this part)
	(ii)	Answers must ft from (b)(i)	-4 and 9	1	B1 ft Answer must ft from their
					(x+p)(x+q) in (b)(i)
					Award B0 for -4 and 9 if no marks
					scored in (i)
					Total 4 marks

9 ((a)	$1.75 \times 10^6 \div 2.4 \times 10^7$ or		3	M1
		$1.75 \times 10^{-2.4} \times 10^{-0.1}$ $1.750\ 000 \div 24\ 000\ 000\ \text{oe eg}\ \frac{1.75}{24}$			
		$0.0729(16)$ or 0.072 or 0.073 or for $\frac{7}{96}$ or			A1
		7.29(16)% or 7.2% or 7.3%			
		Correct answer scores full marks (unless from	7.3×10^{-2}		A1 accept 7.3×10^{-2} or better
		obvious incorrect working)			$(7.29(16) \times 10^{-2})$
((b)	$2.4 \times 10^7 \times 5.01 \times 10^{21} \div 3$ oe		2	M1
	•	Correct answer scores full marks (unless from	4×10^{28}		A1 accept 4×10^{28} , 4.0×10^{28} ,
		obvious incorrect working)			4.01×10^{28} , 4.008×10^{28}
					Total 5 marks

10	eg $\cos 38 = \frac{9.3}{(AB)} \text{ oe or } \sin' 52' = \frac{9.3}{(AB)} \text{ oe or}$ $\frac{(BC)}{\sin 38} = \frac{2 \times 9.3}{\sin' 104'} \text{ oe or } \frac{\sin' 52'}{9.3} = \frac{\sin 90}{(BC)} \text{ oe}$		4	M1 or $BN = \frac{9.3 \sin 38}{\sin' 52'}$ or $9.3 \tan 38 (= 7.2659)$ and $(AB^2) = 9.3^2 + '7.2659'^2$
	eg $(AB =) \frac{9.3}{\cos 38} (= 11.80) \text{ or}$ $(AB =) \frac{9.3}{\sin' 52'} (= 11.80) \text{ or}$ $(BC =) \frac{2 \times 9.3 \times \sin 38}{\sin' 104'} (= 11.80) \text{ oe}$			M1 or $(AB =)\sqrt{9.3^2 + '7.2659'^2} (= 11.80)$
	'11.8' + '11.8' + 9.3 + 9.3 or '11.8' × 2 + 9.3 × 2 oe Correct answer scores full marks (unless from obvious incorrect working)	42.2		M1 A1 awrt 42.2
				Total 4 marks

11	BOC(BOD) = 180 - 48 - 90 (= 42) oe or EOC = 180 - (90 - 48) or 90 + 48 (= 138) oe		3	M1 for method to find angle BOC or EOC (may be shown in the correct place on the diagram)
	$\frac{180 - '42'}{2}$ oe or '138' ÷ 2 oe			M1 a fully correct method to find angle <i>DFE</i>
	Correct answer scores full marks (unless from obvious incorrect working)	69		A1
				Total 3 marks

(b) $eg \frac{2 \times 10}{3x \times 10} + \frac{4 \times 6}{5x \times 6} - \frac{9 \times 3}{10x \times 3} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{4 \times 6}{30x} - \frac{9 \times 3}{30x} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{4 \times 6}{30x} - \frac{9 \times 3}{30x} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} = \frac{27}{30x} = \frac{27}{30x} - \frac{27}{30x} = $					
terms or for $(4p^3q^4)^2$ or $(4096p^{18}q^{24})^{\frac{1}{3}}$ (b) $eg \frac{2\times10}{3x\times10} + \frac{4\times6}{5x\times6} - \frac{9\times3}{10x\times3} \left(=\frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x}\right)$ 2 M1 for a common denominator for all 3 terms with at least 2 correct equivalent fractions (no need for signs) [NB: fraction can be done in 2 parts] Correct answer scores full marks (unless from obvious incorrect working) (c) $eg = \frac{4x(x-5) = 4x^2 - 20x \text{ or}}{4x(2x+3) = 8x^2 + 12x \text{ or}}$ $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $eg = \frac{4x^2 - 20x}{(4x^2 - 20x)(2x+3)} = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $eg = \frac{4x^2 - 20x}{(4x^2 - 20x)(2x+3)} = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $eg = \frac{4x^2 - 20x}{(4x^2 - 20x)(2x+3)} = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $eg = \frac{4x^2 - 20x}{(4x^2 - 20x)(2x+3)} = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $eg = \frac{4x^2 - 20x}{(4x^2 - 20x)(2x+3)} = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$	12 (a)		$16p^{6}q^{8}$	2	
(b) $eg \frac{2 \times 10}{3x \times 10} + \frac{4 \times 6}{5x \times 6} - \frac{9 \times 3}{10x \times 3} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{4 \times 6}{30x} - \frac{9 \times 3}{30x} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{4 \times 6}{30x} - \frac{9 \times 3}{30x} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} \right)$ $\frac{2}{30x} = \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x} = \frac{27}{30x} = \frac{27}{30x} = \frac{27}{30x} - \frac{27}{30x} = $					(B1 for 2 correct terms in a product of 3
					terms or for $(4p^3q^4)^2$ or $(4096p^{18}q^{24})^{\frac{1}{3}}$)
	(b)	$\frac{2\times10}{2} + \frac{4\times6}{2} + \frac{9\times3}{2} = \frac{20}{2} + \frac{24}{27} = \frac{27}{2}$		2	
[NB: fraction can be done in 2 parts] Correct answer scores full marks (unless from obvious incorrect working) (c) eg $4x(x-5) = 4x^2 - 20x \text{ or}$ $4x(2x+3) = 8x^2 + 12x \text{ or}$ $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ eg $(4x^2 - 20x)(2x+3) = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ [NB: fraction can be done in 2 parts] A1 or $\frac{17}{30}x^{-1}$ A1 or $\frac{17}{30}x^{-1}$ A1 or $\frac{17}{30}x^{-1}$ $4x(x-5) \text{ or}$ $4x(x-5) \text{ or}$ $4x(2x+3) \text{ or}$ $(x-5)(2x+3)$ M1ft but dep on previous M1 for correctly expanding – allow one extra		$\frac{\log \frac{1}{3x \times 10} + \frac{1}{5x \times 6} - \frac{1}{10x \times 3} \left(-\frac{30x}{30x} + \frac{30x}{30x} - \frac{30x}{30x} \right)}{10x \times 10}$			•
Correct answer scores full marks (unless from obvious incorrect working) $\frac{17}{30x}$ A1 or $\frac{17}{30}x^{-1}$ (c) eg $4x(x-5) = 4x^2 - 20x$ or $4x(2x+3) = 8x^2 + 12x$ or $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ eg $(x-5)(2x+3) = 2x^2 - 7x - 15$ 3 M1 allow one error in the expansion of $4x(x-5)$ or $4x(2x+3)$ or					` ,
(c) eg $4x(x-5) = 4x^2 - 20x$ or $4x(2x+3) = 8x^2 + 12x$ or $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $= 2x^2 - 7x - 15$ eg $(4x^2 - 20x)(2x+3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or M1 allow one error in the expansion of 4x(x-5) or 4x(2x+3) or (x-5)(2x+3) M1ft but dep on previous M1 for correctly expanding – allow one extra			1.7		[NB: fraction can be done in 2 parts]
(c) eg $4x(x-5) = 4x^2 - 20x$ or $4x(2x+3) = 8x^2 + 12x$ or $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $= 2x^2 - 7x - 15$ (d) M1 allow one error in the expansion of $4x(x-5)$ or $4x(2x+3)$ or $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $= 2x^2 - 7x - 15$ (eg M1 ft but dep on previous M1 for $(4x^2 - 20x)(2x+3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or correctly expanding – allow one extra			<u>17</u>		A1 or $\frac{17}{x^{-1}}$
$4x(x-5) = 4x^2 - 20x \text{ or} 4x(2x+3) = 8x^2 + 12x \text{ or} (x-5) (2x+3) = 2x^2 + 3x - 10x - 15 = 2x^2 - 7x - 15$ $4x(x-5) \text{ or} 4x(2x+3) \text{ or} (x-5) (2x+3)$ $4x(2x+3) \text{ or} (x-5) (2x+3)$		incorrect working)	30 <i>x</i>		30
$4x(2x+3) = 8x^{2} + 12x \text{ or}$ $(x-5)(2x+3) = 2x^{2} + 3x - 10x - 15$ $= 2x^{2} - 7x - 15$ eg $(4x^{2}x+3) = 8x^{3} + 12x^{2} - 40x^{2} - 60x \text{ or}$ $4x(2x+3) \text{ or}$ $(x-5)(2x+3)$ $(x-5)(2x+3)$ $(x-5)(2x+3)$ $(x-5)(2x+3)$ $(x-5)(2x+3)$ $(x-5)(2x+3)$ $(x-5)(2x+3)$	(c)			3	M1 allow one error in the expansion of
$(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $= 2x^2 - 7x - 15$ $(x-5)(2x+3)$ $= 2x^2 - 7x - 15$ $(x-5)(2x+3)$ $= 3x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $(x-5)(2x+3)$ $= 3x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $(x-5)(2x+3)$ $= 3x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $= 3x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ $= 3x^3 + 12x^2 - 40x^2 - 60x \text{ or}$					
$= 2x^2 - 7x - 15$ eg $(4x^2 - 20x)(2x + 3) = 8x^3 + 12x^2 - 40x^2 - 60x \text{ or}$ M1ft but dep on previous M1 for correctly expanding – allow one extra					
eg M1ft but dep on previous M1 for $(4x^2 - 20x)(2x + 3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or correctly expanding – allow one extra					(x-5)(2x+3)
$(4x^2 - 20x)(2x + 3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or correctly expanding – allow one extra		$=2x^2-7x-15$			
(9.2 + 12.)(0.5) = 9.3 + 12.2 + 40.2 + 60.4		$(4x^2 - 20x)(2x + 3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or $(8x^2 + 12x)(x - 5) = 8x^3 + 12x^2 - 40x^2 - 60x$			1
					error or one omission.
or $4x(2x^2 + 3x - 10x - 15) = 8x^3 + 12x^2 - 40x^2 - 60x$					
$\begin{vmatrix} 4x(2x + 3x - 10x - 13) - 6x + 12x - 40x - 60x \\ \text{or} \end{vmatrix}$					
$4x(2x^2 - 7x - 15) = 8x^3 - 28x^2 - 60x$					
Working required $8x^3 - 28x^2 - 60x$ A1 dep on M1			$8r^3 - 28r^2 - 60r$		A1 den on M1
		monung required	0A 20A 00A		May be factorised if $8x^3 - 28x^2 - 60x$ seen
					Total 7 marks

13	$y \ge -3$ oe	3	B3 for all 3 correct inequalities
	$x + y \le 1$ oe		(B2 for 2 correct inequalities
	$y \le 2x + 2$ oe		B1 for 1 correct inequality)
			Allow \leq instead of \leq and
			> instead of ≥
			Total 3 marks

		I	_	I = 2 2 4
14 (a)	0.8, 2.6, 1.9, 1.6, 0.3	Correct histogram	3	B3 fully correct histogram
				(B2 for at least 3 correct frequency
				densities or at least 3 correct bars
				or
				all five bars of correct width with heights
				in the correct ratio
				B1 for 2 correct frequency densities or
				2 correct bars – but these bars must be of
				different widths, ie not 1 st and 3rd)
				or
				three bars of correct width with heights in
				the correct ratio)
(b)			2	,
			_	M1 for $\frac{n}{40}$ where $n < 40$ or for
				$\frac{4}{}$ where $m>4$
				700
	Correct answer scores full marks (unless from	4		4
	obvious incorrect working)	$\frac{1}{40}$		A1 for $\frac{4}{40}$ oe
		70		2
				If M0 then SCB1 for $\frac{2}{35}$ (or 0.057)
				Total 5 marks

15 (a)		$-\frac{1}{3}$	1	B1 oe allow -0.3 or -0.33 or better allow $x = -\frac{1}{3}$ or $x \neq -\frac{1}{3}$
(b)	$\frac{2x-3}{3(2x-3)+1}$		2	M1 for substituting $f(x)$ into $g(x)$ Allow $\frac{f}{3f+1}$
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2x-3}{6x-8}$		A1 oe (do not isw incorrect cancelling)
(c)	y(3x+1) = x and or $x(3y+1) = y$ and $3xy + y = x$ $3xy + x = y$		3	M1 for moving the denominator to the other side of the equation and expanding correctly
	x(1-3y) = y or $x(3y-1) = -y$ or $y(1-3x) = x$ or $y(3x-1) = -x$			M1 for collecting and factorising the variable on one side in a correct equation
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{x}{1-3x}$		A1 oe eg $-\frac{x}{3x-1}$ or $\frac{-x}{-1+3x}$ oe
				Total 6 marks

16	$\frac{4}{15} \times \frac{4}{15} \text{ or } \frac{5}{15} \times \frac{5}{15} \text{ or } \frac{6}{15} \times \frac{6}{15} \text{ oe}$ (where $6 = 15 - 4 - 5$) $4 4 5 5 6 6 16 1 4$		3	M1 oe for one correct product (allow decimals to 2 dp rounded or truncated) $ (\frac{4}{15})^2 = (0.26(6))^2 = 0.07(11)$ $ (\frac{5}{15})^2 = (0.33(3))^2 = 0.11(1)$ $ (\frac{6}{15})^2 = (0.4)^2 = 0.16$ M1 oe
	$\begin{vmatrix} \frac{4}{15} \times \frac{4}{15} + \frac{5}{15} \times \frac{5}{15} + \frac{6}{15} \times \frac{6}{15} \text{ oe } & \text{eg } \frac{16}{225} + \frac{1}{9} + \frac{4}{25} \\ \text{(where } 6 = 15 - 4 - 5) \end{vmatrix}$			for the sum of all three correct products
	Correct answer scores full marks (unless from obvious incorrect working)	77 225		A1 oe 0.34(222) or 34.(222)% (if no marks awarded, SCB2 for $\frac{31}{105}$ oe from non-replacement, SCB1 for a fully correct method for non-replacement)
				Total 3 marks

17	$\left(\frac{8}{\sqrt{5}-1}\right) \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$ or $\frac{8\left(\sqrt{5}+1\right)}{4} \text{ or } \frac{8\sqrt{5}+8}{4} \text{ oe}$		3	M1 for rationalising the denominator – award for seeing intention to multiply by $\frac{\sqrt{5}+1}{\sqrt{5}+1} \text{ or } \frac{-\sqrt{5}-1}{-\sqrt{5}-1}$
	Working required	$2\sqrt{5} + 2$		A1 from correct working
		$\sqrt{20} + 2$		B1ft for $k\sqrt{5} + c = \sqrt{5k^2} + c$ where $5k^2$ is a single integer Accept $a = 20$ and $b = 2$
				Total 3 marks

18	$(AC^2 =) 9^2 + 12^2 - 2 \times 9 \times 12 \times \cos 60 = 117)$ or $(AC^2 =) 81 + 144 - 108 = 117$ oe		5	M1 oe eg $BM = 9\cos 60 (= 4.5) \text{ and } AM = 9\sin 60 (= \frac{9\sqrt{3}}{2}) \text{ and}$
				$AC^{2} = \left(\frac{9\sqrt{3}}{2}\right)^{2} + (12 - 4.5)^{2}$
				(where AM is perpendicular to BC)
	$(AC =)\sqrt{117} \text{ or } 3\sqrt{13} \text{ or } 10.8(16653)$			A1 oe
	(area $ABC = 0.5 \times 9 \times 12 \times \sin 60 = 27\sqrt{3}$ or $46.7(653)$)			M1 indep or $\frac{1}{2} \times '(\frac{9\sqrt{3}}{2})' \times 12 \ (=27\sqrt{3})$ oe
	(area $ACD =)0.5 \times 7 \times \sqrt{117} \times \sin 84 (=37.6(50896))$			M1 dep on 1st M1
	Working required	84.4		A1 dep on M3 awrt 84.4
				Total 5 marks

19	y = x - 3	x = y + 3		6	B1 for correct rearrangement of linear
19	y-x-3	x-y+3		0	_
	2 2 (2)2 + (2) 0	$\frac{2(2+2)^2}{2}$			equation
	$eg 3x^2 - (x-3)^2 + x(x-3) = 9$	$eg 3(3+y)^2 - y^2 + y(3+y) = 9$			M1 substitution of their linear equation into
		2			quadratic in x or y alone(even if B0 scored)
	eg $3x^2 + 3x - 18 (= 0)$	$eg 3y^2 + 21y + 18 (= 0)$			M1ft from their substitution (dep on
	or	or			previous M1) for a complete correct
	$x^2 + x - 6 = 0$	$y^2 + 7y + 6 (= 0)$			method to get a 3-term or 2-term quadratic
					expression in the form
					$ax^{2} + bx + c = 0$ [allow $ax^{2} + bx = c$]
	eg(x-2)(x+3) (= 0)	eg(y+1)(y+6) (=0)			M1 (dep on M1) for a complete method to
					solve their 3-term or 2- term quadratic
	1 1 12 4 1 6	\overline{a} \overline{a} \overline{a}			equation $(ax^2 + bx (+ c) = 0)$ – correct
	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times -6}}{2 \times 1}$	$y = \frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times 6}}{2 \times 1}$			factorisation or substitution into formula or
	2×1	2×1			completing square (allow one sign error
					and some simplification – allow as far as
	eg	eg			
	$(1)^2 (1)^2$	$(7)^2 (7)^2$			$\left(\frac{-1 \pm \sqrt{1 + 24}}{2} \text{ or } \frac{-7 \pm \sqrt{49 - 24}}{2} \right)$
	$\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 6$	$\left(y - \frac{7}{2}\right)^2 - \left(\frac{7}{2}\right)^2 = -6$			2 2 ,
	(2)	(2)			or for seeing $x = 2$, $x = -3$ or $y = -1$, $y = -6$
	x = -3, x = 2 and	y = -1, y = -6			A1 (dep on M2) for $x = 2$, $x = -3$ and
					y = -1, y = -6 or
		1 7			1 7
	or one correct midpoint coordina	ate ie $x = -\frac{1}{2}$ or $y = -\frac{7}{2}$			one correct midpoint ie $x = -\frac{1}{2}$ or $y = -\frac{7}{2}$
	Working required	_	(17)		A1 (dep on M2) oe
			$\left[\left(-\frac{1}{2}, -\frac{7}{2} \right) \right]$		(35) 31 (12) 33
			(2 2)		
					Total 6 marks

20	$\frac{3k}{4} - k \text{ or } \frac{k}{2} - \frac{3k}{4} \text{ or } \frac{k}{4} - \frac{k}{2} (= -\frac{k}{4})$ or $\frac{90 + 2k - k}{14} = (\frac{90 + k}{14})$		5	M1 for finding the common difference (d) in terms of k
	eg $90 + 2k = k + (15 - 1)! \left(\frac{3k}{4} - k\right)$ ' oe or $\frac{3k}{4} - k! = \frac{90 + k}{14}$ ' oe			M1 dep equating 2 different expressions in terms of k using their value(s) of d in terms of k (or from working using k) or other correct method to find k
	k = -20			A1
	$\frac{30}{2} \left[2('-20') + (30-1) \left(\frac{-'-20'}{4} \right) \right] $ oe			M1 dep on previous M1 for correctly substituting, into $(S_n =) \frac{30}{2} [2k + (30 - 1)d] \text{ or }$ $\frac{30}{2} (k + l) \text{ where } l = k + 29d$ all values to be numerical
	Correct answer scores full marks (unless from obvious incorrect working)	1575		A1
				Total 5 marks

	T	T	I .	T
21 (a)		(-2, 9)	1	B1
(b)		$(y =) 9-3(x-4+2)^2$	1	B1 oe eg $(y =) -3x^2 + 12x - 3$
				accept $f(x-4)$
(c)		Reflection in the line <i>y</i>	1	B1 with no mention of another
		= 0 or x-axis		transformation
(d)	(3, -90, 2)	eg	3	B3 for all 3 correct values
	(-3, 90, 2)	a=3		eg 3, -90, 2 or -3, 90, 2
	((3, 270, 2)	b = -90		
	(-3, 450, 2)	c = 2		(If not B3 then B2 for any 2 correct
	etc			values
				NB.
				2 values from $3, -90, 2$ or
				2 values from -3, 90, 2
				NB: accept a value of $(90 + 360n)$ in
				place of 90 or $(-90 + 360n)$ in place of
				-90 where <i>n</i> is an integer (could be
				negative)
				If not B2 then
				B1 for any 1 correct value or
				the graph of $y = \cos x^{\circ}$ for $0 \le x \le 360$)
				Total 6 marks

22	eg $\frac{4}{3}\pi r^3 = 288\pi \text{ oe } \frac{4}{3}\pi \left(\frac{x}{2}\right)^3 = 288\pi \text{ oe}$		6	M1 for using the formula for the volume of a sphere correctly and equating it to 288π
	x = 12			A1
	$\sqrt{(5 \times '12')^2 + (0.5 \times '12')^2} (= 6\sqrt{101} = 60.299) \text{ oe}$ or $(OC =)0.5\sqrt{'24'^2 + '12'^2} (= 6\sqrt{5}) \text{ and } AC = \sqrt{(6\sqrt{5})'^2 + '60'^2} (= 6\sqrt{105})$ and $\sqrt{(6\sqrt{105})'^2 - '12'^2} (= 6\sqrt{101}) \text{ oe}$ $\sqrt{(5 \times '12')^2 + (1 \times '12')^2}) (= 12\sqrt{26} = 61.188) \text{ oe}$			M1 (dep on first M1 and using their value for x) for using Pythagoras to find the perp height of faces CAD or BAE or a correct method to find angle CAD or BAE M1 (dep on first M1 and using their
	or $(OC =)0.5\sqrt{24^{12} + 12^{12}} (= 6\sqrt{5})$ and $AC = \sqrt{(6\sqrt{5})^{12} + 60^{12}} (= 6\sqrt{105})$ and $\sqrt{(6\sqrt{105})^{12} - 6^{12}} (= 12\sqrt{26})$ oe			value for x) for using Pythagoras to find the perp height of faces ABC or AED or a correct method to find angle BAC or DAE
	$(`12` \times 2(`12`)) + 2(0.5 \times `12` \times `12\sqrt{26}`) + 2(0.5 \times 2`12` \times `6\sqrt{101}`)$ oe eg $^{1}288' + 2 \times ^{1}72\sqrt{26}' + 2 \times ^{1}72\sqrt{101}'$ or $^{1}288' + 2 \times ^{1}367.129' \dots + 2 \times ^{1}723.59 \dots$ ' oe			M1 (dep on first M1 using their value for x and correct working for heights of each triangle) for working out the total surface area of the pyramid
	Correct answer scores full marks (unless from obvious incorrect working)	2469		A1 2469 - 2470
				Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom