

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/23 October/November 2016

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 5 printed pages.

[Turn over

Page 2	Page 2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0580	23

Abbreviations

cao correct	answer	only
-------------	--------	------

- dep dependent
- follow through after error \mathbf{FT}
- ignore subsequent working or equivalent isw
- oe
- SC
- Special Case not from wrong working nfww
- seen or implied soi

Q	uestion	Answer	Mark	Part marks
1		36	1	
2		n^7 final answer	1	
3		В	1	
4	(a)	$2.47 imes 10^6$	1	
	(b)	$7.9 imes 10^{-3}$	1	
5		$\frac{18}{30}$ and $\frac{5}{30}$ oe must be shown	M1	$\frac{18k}{30k} \text{and} \frac{5k}{30k}$
		$\frac{23}{30}$ cao	A1	
6		Thursday	2	M1 for 5.4 found or at least two of: 3.8, 3.6 and 4 found
7		$0.4^2 \ 0.6^3 \ 0.22 \ \sqrt{0.09}$	2	M1 for decimal conversion 0.216 and 0.3 and 0.16
8		4.25 4.15	2	B1 for each or both answers reversed
9	(a)	A	1	
	(b)	A ruled line joining (65, 23) to (80, 28)	1	
10	(a)	2.9[0] or 2.900 to 2.901	1	
	(b)	3.17 or 3.172 to 3.173	1	
11		18 360	2	M1 for $34000 \times \left(1 - \frac{40}{100}\right) \times \left(1 - \frac{10}{100}\right)$ oe
12		32.7 or 32.72 to 32.73	2	M1 for $\left[\frac{1}{2} \times\right] \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$

Page 3		k Scheme	Syllabus Paper		
Cambridge IGCSE – October/November 2016 0580 23					
Question Answer		Mark	Part marks		
13	$\frac{2}{9}$ oe, must be a fraction	2	M1 for $2.2 - 0.2$ oe or B1 for $\frac{k}{9}$		
14 (a)	30	1			
(b)	47.5	2	M1 for 4.5×5 oe		
15 (a)	68	1			
(b)	9	2	M1 for 360 ÷ 40 oe or $\frac{180(n-2)}{n} = 140$ oe		
16	1.25	3	M1 for $d = \frac{k}{(w+1)^2}$ or better		
			M1 for $[d=] \frac{their k}{(7+1)^2}$ or M2 for $3.2(4+1)^2 = d(7+1)^2$ oe		
17	y = 2x oe	3	M1 for $\frac{1-3}{12-8}$ oe M1 for perpendicular gradient × <i>their</i> $\frac{1-3}{12-8} = -1$ oe		
			If zero scored, SC1 for answer $y = kx \ k \neq 2$ or 0		
18 (a)	25	1			
(b)	$\frac{x^2-3}{2}$ of final answer	1			
(c)	2x + 3 final answer	2	M1 for correct first step, e.g. $x = \frac{y-3}{2}$ or $2y = x - 3$		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	23

Q	uestion	Answer	Mark	Part marks
19	(a)	Correct tangent	B1	No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and $x = 1.2$
		$2.1 \leq \text{grad} \leq 3.9$	2	dep on B1 M1 for $\frac{rise}{m}$ also dep on any tangent drawn or
				run close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent
	(b)	(-2, 8)	1	
20	(a)	$\mathcal{E} \qquad A \qquad B \\ 0.3 \\ \pi \\ 2\sqrt{8} \\ 0.3 \\ \pi \\ 2\sqrt{8} \\ 0.3 \\ 10 \\ 0.3 \\ 0.$	2	B1 for 3 elements in the correct place
	(b)	C	1	
		F G	1	
21	(a)	14.4 or 14.42 to 14.43	2	M1 for $\frac{1}{2} \times 6.2 \times 4.7 \times \sin 82$ oe
	(b)	30.7 or 30.72	2	$\mathbf{M1} \text{ for } \sin = \frac{2050}{\frac{1}{2} \times 107 \times 75}$
22		1 3.5 1	4	B3 for 2 correct B2 for 1 correct or M1 for 2, 7, [] and 2 seen [FDs]
23		$\frac{7n}{2t+3m}$ final answer	4	M1 for $7n(6p - 1)$ seen and M2 for $(2t + 3m)(6p - 1)$ seen or M1 for $2t(6p - 1) + 3m(6p - 1)$ or $6p(2t + 3m) - 1(2t + 3m)$

Page 5	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – October/November 2016			0580	23
Question	Answer	Mark	x Part marks		
24	$y \le -\frac{3}{5} x + 6 \text{ oe}$ $x \ge 2 \text{ oe}$ y > x oe final answers	5	SC4 for $y < -\frac{3}{5}x + 6$, $x > 0$ or B3 for $y \le -\frac{3}{5}x + 6$ oe or B2 for $y = -\frac{3}{5}x + 6$ oe or B1 for gradient $= -\frac{3}{5}$ of and B2 for $x \ge 2$ and $y > x$ oe or B1 for either $x \ge 2$ or $y \ge 0$ or for $x = 2$ and $y = x$ with it	e soi > x oe	qualities
25 (a)	СВ	1			
(b)	$ \begin{pmatrix} 36 & -2 \\ 18 & -1 \end{pmatrix} $	2	B1 for two correct entries		
(c)	$\left(\begin{matrix} 10 & 1 \end{matrix} \right)$ $\frac{1}{47} \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix}$ seen or $k = 1$	det = 47 soi	
(d)	The determinant is 0 oe	1			