

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/31 October/November 2016

Paper 3 (Core) MARK SCHEME Maximum Mark: 104

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 6 printed pages.

[Turn over

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	31

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

nfww not from wrong working soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i)	1700 or 5pm	2	B1 for 2200 or [0]5 20 or 10pm or 5:20am or 6 h 40
(ii)	15 575	1	
(b) (i)	2200	2	B1 for 440
			or M1 for $660 \times 2 + their 440 \times 2$ or $\frac{10}{3} \times 660$
			or better
(ii)	104.5 105.5	1 1	SC1 for both correct but reversed
(c) (i)	30 20 72	1 11	
(ii)	Correct pie chart	1	
2 (a) (i)	94	2	M1 for $\frac{160+58+45+82+125}{5}$ or $\frac{470}{5}$
(ii)	115	1	
(b)	$\frac{1800}{5000}$ oe isw	1	
(c)	[0].15 oe	2	M1 for 1 – (0.15 + 0.23 + 0.4 + 0.07) or 1 – 0.85
(d)	39.5[0]	2	M1 for [8.50 +] (7.75 × 4) soi by 31
			If zero scored, SC1 for 47.25
(e)	Correct bar chart	3	B1 for any correct linear scale starting at zero soi
			 B2 for all bars correct height and equal width, with equal gaps or no gaps or B1 for all bars correct height with unequal widths and/or gaps or at least three bars correct height with equal width, with equal gaps or no gaps

PMT

Page	e 3	Mar	k Schen	ne Syllabus Paper
		Cambridge IGCSE -	- Octobe	er/November 2016 0580 31
Question		Answer	Mark	Part marks
3 (a	a) (i)	63	1	
	(ii)	8	1	
	(iii)	11	1	
	(iv)	144	1	
(lt	b)	$4^{2}[=] 16 5^{2}[=] 25$	1	
(0	e) (i)	16384	1	
	(ii)	1	1	
	(iii)	74.1 or 74.08 to 74.09	1	
(0	d)	$2 \times 3^2 \times 5$ or $2 \times 3 \times 3 \times 5$	2	B1 for prime factors 2, 3, 5 (and no others) identified or B1 for any correct product e.g. $9 \times 10.5 \times 18$
				$6 \times 3 \times 5, 1 \times 3 \times 30$
4 (a	a)	3	1	
		cm ²	1	
(t	b) (i)	Rotation	1	
		90° [anticlockwise] oe	1	
		[Centre] (0,0) oe	1	
	(ii)	Correct trapezium	2	B1 for translation of $\begin{pmatrix} 5\\k \end{pmatrix}$ or $\begin{pmatrix} k\\-2 \end{pmatrix}$
	(iii)	Correct trapezium	2	B1 for correct size and orientation but incorrect position

PMT

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0580	31

Question		Answer	Mark	Part marks
5	(a) (i)	17.5	1	
	(ii)	She stopped oe	1	
	(iii)	8.75	2	M1FT for <i>their</i> (a)(i) ÷ 2 soi
	(b)	660 275 385	3	M2 for one correct value in correct place or $\frac{1320}{(5+12+7)} \times k$ where k is 5, 12 or 7 or better in working or M1 for $\frac{1320}{(5+12+7)}$ or better
	(c)	5321.66 cao	4	If zero scored, SC1 for all correct answers in incorrect order M2 for 5000×1.021^3 oe or M1 for $5000 \times 1.021 \times 1.021$ oe A1 for 5321.661 B1 indep for their answer corrected to 2 d.p. if their unrounded answer is shown to at least 3 d.p.
6	(a) (i)	46	1	
	(ii)	Add 7 oe	1	
	(b)	4, 7, 12	2	M1 for 2 correct or 3, 4, 7
	(c) (i)	2a - 3h final answer	2	B1 for 2 <i>a</i> or -3 <i>h</i>
	(ii)	13x - 9 final answer	2	M1 for 5 <i>x</i> + 15 or 8 <i>x</i> – 24 or 13 <i>x</i> or –9
	(d)	3(2g+5) final answer	1	
	(e)	11 nfww	3	M2 for $5x = 55$ or $x + 6 = 17$ or M1 for $5x + 30$ [= 85] or 5 ($x + 6$) [= 85] or M1 for correct first step of incorrect linear equation if of the form $ax + b = 85$, $a \neq 1$

F	Page 5	Mark Scheme			Syllabus	Paper
Cambridge IGCSE – O		- Octobe	er/November 2016	0580	31	
			1			
Question		Answer	Mark	Part marks		
7	(a)	-5x+6	3	B2 for $-5x$ (oe) + 6 or $-5x + k$ or	, rise	
				B1 for $kx + 6$ $k \neq 0$ or [gradient	$r = \int \frac{1}{run} \frac{1}{k}$	
				with correct values or [gradien	$t =] \pm 5 \frac{\kappa}{k}$	
	(b) (i)	3 12	1,1			
	(ii)	Correct curve	4	B3FT for 5 or 6 correctly plot or B2FT for 3 or 4 correctly pl or B1FT for 1 or 2 correctly pl	ted points otted points otted points	
	(c)	0.2 to 0.35	1	FT		
8	(a) (i)	Correct net	3	B2 for 3 or 4 correct faces in correctB1 for 1 or 2 correct faces in corre	orrect positio orrect positio	n n
	(ii)	36	2	M1 for $6 \times 3 \times 2$ oe		
	(b)	Hexagon	1			
	(c)	Obtuse angle indicated	1			
	(d)	16	2	M1 for $\frac{360}{22.5}$ or $\frac{360}{n} = 22.5$		
				or $\frac{180(n-2)}{n} = 157.5$ oe		
	(e) (i)	$\sqrt{20^2 - 12^2}$	M2	M1 for $20^2 = 12^2 + x^2$ or $[x^2 =]$	$20^2 - 12^2$	
	(ii)	153 or 152.5 to 152.6	5	M2 for $\frac{\pi 6^2}{2}$ soi by 56.5 or	18 π	
				or M1 for $\pi 6^2$ soi by 113 or 113.0.	or 113.1	or 36 π
				M1 for $0.5 \times 12 \times 16$ soi by 96		
				M1dep for <i>their</i> 56.5 + <i>their</i> earned soi	96 dep on at	least M1

Page 6	Ма	rk Schen	ne Syllabus Paper
	Cambridge IGCSE	– Octobe	er/November 2016 0580 31
Question Answer		Mark	Part marks
9 (a)	105806	1	
(b)	1.03×10^{5}	1	
(c) (i)	46100	1	
(ii)	100	1	
(iii)	6.82×10^{6}	2	B1 for figs 682
(d)	1.47 or 1.466 to 1.467	3	M2 for $\left(\frac{30851}{30405} - 1\right)$ [×100] oe soi by 0.0146 or 0.0147 or $\left(\frac{30851}{30405}\right) \times 100$ [-100] oe soi by 101.46 or 101.47 or M1 for $\left(\frac{30851}{30405}\right)$ soi by 1.0146 or 1.0147 Alternative method M2 for $\frac{30851 - 30405}{30405}$ [× 100] oe soi by 0.0146 or 0.0147 or B1 for 30.851 - 30.405 soi by 446
10 (a)	35	2	B1 for 7
(b)	305	1	
(c)	Point marked in correct position	2	B1 for point at 4.5 cm or 050° from <i>Y</i>