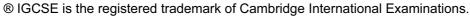
CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS


0580/22 Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	ark Schem ;	Syllabus	Paper
	Cambridge IG :SE – Octo /er/November 2014	05 30	22

A obreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

	Qu.	Answers	Mark	Part Marks
1		$6 + 5 \times (10 - 8) = 16$	1	One pair of brankets only
2		20	1	
3		8	1	
4		ξ A B	1	
		ξ	1	
5		v^3-p	2	$\mathbf{M1} \text{ for } v^3 = r + r$
6		95.5 96.5 in correct place : cao	2	B I for 95.5 or 96.5 in cor ect place or for answers reversed
7	(a)	700	2	M1 for 2800 ×).325
	(b)	0.28	1	
8		$\frac{7}{6}$ oe	B1	
		their $\frac{7}{6} \times \frac{8}{7}$ oe	M1	O: M1 for $\frac{56}{\cancel{48}} = \frac{42}{\cancel{48}}$ or equivalent divisio
		$\frac{4}{3}$ or $1\frac{1}{3}$ cao must see working	A1	w th fractions with common lenominator

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0580	22

9	9.13 or 9.127 to 9.1271	3	M2 for $\sqrt[3]{\frac{1000}{440}}$ [1.31] oe or $\sqrt[3]{\frac{440}{1000}}$ [0.761] oe Or M1 for $\frac{1000}{440}$ [2.27] oe or $\frac{440}{1000}$ [0.44] oe or $\sqrt[3]{\frac{figs 440}{figs 1000}}$ or $\sqrt[3]{\frac{figs 1000}{figs 440}}$
10	97.2[0]	3	M1 for $C = kr^2$ A1 for $k = 30$ or M2 for $\frac{202.8}{2.6^2} = \frac{c}{1.8^2}$ oe
11 (a) (b)	$\begin{pmatrix} 6 & 4 \\ 8 & 38 \end{pmatrix}$	2	M1 for a 2 by 2 matrix with two correct elements SC1 for $\begin{pmatrix} 16 & 14 \\ 18 & 28 \end{pmatrix}$
12	R	3	0 1 2 2 1 2 SC1 for
13	13.5 or 13.45[]	3	M2 for $\sqrt{\frac{2 \times 85}{\sin 110}}$ or M1 for $\frac{1}{2} \times a^2 \times \sin 110 = 85$ or $\frac{2 \times 85}{\sin 110}$ oe [180.9]
14 (a) (b)	2.47 or 2.474 to 2.4744 0.742 or 0.7422 to 0.74232	2 1FT	M1 for $\frac{56}{360} \times \pi \times 2.25^2$ oe FT <i>their</i> (a) × 0.3[0] correctly evaluated.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0580	22

15	(a)		$2 \times 3 \times 3 \times 5$	2	B1 for 2, 3, [3] and 5 identified as only prime factors
					or M1 for partial prime factorisation $6 \times 3 \times 5$ or $2 \times 9 \times 5$ or $3 \times 3 \times 10$ or $2 \times 3 \times 15$
	(b)		630	2	M1 for $2 \times 3^2 \times 5 \times 7$ oe or for listing multiples of 90 and 105 at least up to 630
16	(a)		108	1	
			Angle at centre is twice angle at circumference oe	1	
	(b)	(i)	$-\frac{4}{3}$ oe	1	
		(ii)	-1	1	
17			[0.]08	4	M3 for $_{200} \times \left(1 + \frac{2}{100}\right)^2 - 200 - \frac{200 \times 2 \times 2}{100}$ oe
					or M1 for $_{200} \times \left(1 + \frac{2}{100}\right)^2$
					and M1 for $\frac{200 \times 2 \times 2}{100}$ [+200]
18	(a)		56	2	B1 for 16 soi or M1 for 72 – <i>their</i> 16
	(b)	(i)	63 or 63 to 63.5	1	
		(ii)	22 or 21.6 to 23 nfww	2	B1 for 49.8 to 50.2 seen or 71.8 to 72.8
19	(a)	(i)	c – a	1	
		(ii)	$-\frac{1}{3} \mathbf{a} + \frac{1}{3} \mathbf{c}$	3	M2 for $-a + \frac{1}{3}(c + 2a)$ oe
					e.g. $-\mathbf{a} + \mathbf{c} + 2\mathbf{a} - \frac{2}{3}(\mathbf{c} + 2\mathbf{a})$
					Or $M1$ for a correct route from A to X
	(b)		\overrightarrow{AC} is a multiple of \overrightarrow{AX}	1	oe
			they share a common point [A]	1	oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0580	22

20	(a)	102 to 106	2	B1 for 5.1 to 5.3 seen
	(b)	Correct position of F with correct arcs for angle bisector	5	B2 for Correct ruled angle bisector of A with correct arcs or B1 for correct bisector with no/wrong arcs and B2 for Arc centre C, radius 8 cm or B1 for arc centre C with incorrect radius or correct conversion to 8cm and B1 for marking position of F on their bisector and 8cm from C or on their arc centre C
21	(a)	$\frac{x+7}{(2x-1)(x+2)}$ Final answer	3	B1 for $3(x+2)$ $1(2x + 1)$ seen or better B1 for denominator $(2x-1)(x+2)$ oe seen SC2 for final answer $\frac{x+5}{(2x+1)(x+2)}$
	(b)	$\frac{2x}{x+7}$ Final answer	4	M1 for $4x(x-4)$ or partial factorisation of numerator and M2 for $[2](x+7)(x-4)$ oe or M1 for $[2](x^2+3x-28)$ or $[2](x+a)(x+b)$ where $ab=-28$ or $a+b=3$ SC3 for answer $\frac{4x}{2x+14}$ oe