UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	age 2 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0580	23

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	112	2	M1 for $240 \div (7+8) \times 7$
2	(a) 211 cao	1	
	(b) 216 cao	1	
3	(x =) -3 (y =) 5	2	M1 for correctly eliminating one variable
4	$\frac{16}{81}$ cao	2	B1 for $\frac{81}{16}$, $\frac{k}{81}$, $\frac{16}{k}$ or $(2/3)^4$ seen
5	(a) 1.28×10^5	1	
	(b) 128 500	1	
6	882	2	M1 800 × 1.05 × 1.05
7	$\frac{1}{9}, \frac{1}{4}$	M1	Both fractions seen
	$\left(\frac{1}{9} + \frac{1}{4} = \right) \frac{4}{36} + \frac{9}{36} = \frac{13}{36}$	E1	Both fractions over a common denominator and added to give $\frac{13}{36}$
8	0.186	2	B1 for 2.477 to 2.478 or 13.29 seen
9	(a) 5 or -5	1	
	(b) $-0.714 (-0.7143 \text{ to } -0.7142) \text{ or } -\frac{5}{7}$	2	M1 for $-2 + 2 + 1 - 3 - 1 - 2$ and $\div 7$
10	9 h 12 min	3	M1 for 8 × 1.15 A1 for 9.2 B1 ft independent for their 9.2 correctly converted into hours and minutes
11	x(p-2q)(p+2q)	3	M2 for $(px - 2qx)(p + 2q)$ or $(p - 2q)(px + 2qx)$ or M1 for $x(p^2 - 4q^2)$
12	225.(23112)	3	M2 for (800 ÷ 3.8235 – 150) × 3.8025 M1 for 800 ÷ 3.8235
13	68.5 www	3	M2 for 67.13 ÷ 0.98 or M1 for 67. 13 is 98%
14	$66\frac{2}{3}$ or 66.7 www	3	M2 for $\frac{\frac{4}{3}\pi r^3}{\pi r^2(2r)}$ (× 100) or M1 for $\pi r^2(2r)$
15	$p = \frac{c}{a - x}$	3	M1 one correct move M1 second correct move M1 third correct move marked on answer line

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0580	23

The content of the		Г		_
17	16	$(\mathbf{a}) t = 2\sqrt{l}$	2	M1 for $t = k\sqrt{l}$
(ii) 4 (b) $\frac{7}{13}$ oc 1ft Ft their Venn diagram or their (a)(i)/13 18		(b) 3	1ft	Ft dependent on using $t = k\sqrt{l}$
	17	(ii) 7	1	
18 $\frac{1-5x+x^2}{x(1-2x)}$ or $\frac{1-5x+x^2}{x-2x^2}$ 4 M1 for $(1-x)(1-2x)-x(2+x)$ seen B1 for $1-x-2x+2x^2$ or $1-3x+2x^2$ seen B1 for $x(1-2x)$ oe as a common denominator. 19 4.32 4 M1 for $\frac{50}{360} \times \pi \times 9^2$ M1 for $0.5 \times 9^2 \times \sin 50$ M1 for subtracting their triangle from their sector (dependent on at least M1) 20 (a) (i) 2×2 1 (ii) (20) 1 Brackets essential M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ seen 21 (a) 84(.00) 4 M2 for $\cos () = \frac{2.7^2 + 4.5^2 - 5^2}{2 \times 2.7 \times 4.5}$ or (M1 for $5^2 = 2.7^2 + 4.5^2 - 2 \times 2.7 \times 4.5 \times \cos A1$ for 0.1045 (implied by correct answer) (b) 136 1ft 220 - their (a) 22 (a) Angles in same segment 1 (b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen		(ii) 4	1	
		(b) $\frac{7}{13}$ oe	1ft	Ft their Venn diagram or their (a)(i)/13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$\frac{1-5x+x^2}{x(1-2x)}$ or $\frac{1-5x+x^2}{x-2x^2}$	4	M1 for $(1-x)(1-2x) - x(2+x)$ seen B1 for $1-x-2x+2x^2$ or $1-3x+2x^2$ seen B1 for $x(1-2x)$ oe as a common denominator
M1 for subtracting their triangle from their sector (dependent on at least M1) 20 (a) (i) 2×2 1 (ii) (20) 1 Brackets essential 2 M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ seen 21 (a) 84(.00) 4 M2 for $\cos() = \frac{2.7^2 + 4.5^2 - 5^2}{2 \times 2.7 \times 4.5}$ or (M1 for $5^2 = 2.7^2 + 4.5^2 - 2 \times 2.7 \times 4.5 \times \cos$ A1 for 0.1045 (implied by correct answer) (b) 136 1ft 220 - their (a) 22 (a) Angles in same segment 1 (b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen	19	4.32	4	$\mathbf{M1} \text{ for } \frac{50}{360} \times \pi \times 9^2$
(ii) (20) (b) $\frac{1}{2} \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ oe 2 M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ seen 21 (a) 84(.00) 4 M2 for $\cos () = \frac{2.7^2 + 4.5^2 - 5^2}{2 \times 2.7 \times 4.5}$ or (M1 for $5^2 = 2.7^2 + 4.5^2 - 2 \times 2.7 \times 4.5 \times \cos$ A1 for 0.1045 (implied by correct answer) (b) 136 1ft 220 – their (a) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen				M1 for subtracting their triangle from their
	20	(a) (i) 2 × 2	1	
21 (a) 84(.00) 4 M2 for $\cos () = \frac{2.7^2 + 4.5^2 - 5^2}{2 \times 2.7 \times 4.5}$ or $\frac{2 \times 2.7 \times 4.5}{3.84}$ or $$		(ii) (20)	1	Brackets essential
(M1 for $5^2 = 2.7^2 + 4.5^2 - 2 \times 2.7 \times 4.5 \times \cos$ A1 for 0.1045 (implied by correct answer) (b) 136 1ft 220 – their (a) 2 (a) Angles in same segment (b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen		(b) $\frac{1}{2} \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ oe	2	M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -2 & 2 \end{pmatrix}$ seen
(b) 136 1ft 220 – their (a) 22 (a) Angles in same segment (b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen	21	(a) 84(.00)	4	M2 for cos () = $\frac{2.7^2 + 4.5^2 - 5^2}{2 \times 2.7 \times 4.5}$ or
22 (a) Angles in same segment (b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen				(M1 for $5^2 = 2.7^2 + 4.5^2 - 2 \times 2.7 \times 4.5 \times \cos C$) A1 for 0.1045 (implied by correct answer)
(b) (i) 8.2(0) 2 M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe (ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen		(b) 136	1ft	220 – their (a)
(ii) 24.7 2 M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe 23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen	22	(a) Angles in same segment	1	
23 (a) 0.133 (3) or $\frac{2}{15}$ 2 M1 for $40 \div 300$ seen		(b) (i) 8.2(0)	2	M1 for $\frac{CX}{3.84} = \frac{9.4}{4.4} (= 2.136)$ oe
		(ii) 24.7	2	M1 for $\frac{\Delta}{5.41} = \left(\frac{9.4}{4.4}\right)^2 (= 4.564)$ oe
(b) $33\frac{1}{2}$ or 33.3	23	(a) $0.133(3)$ or $\frac{2}{15}$	2	M1 for 40 ÷ 300 seen
M1 for correct total area statement		(b) $33\frac{1}{3}$ or 33.3	3	M1 for area under graph attempted M1 for correct total area statement