## CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

## MARK SCHEME for the March 2016 series

## 0606 ADDITIONAL MATHEMATICS

0606/22

Paper 22, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE<sup>®</sup> and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                  | Syllabus | Paper |
|--------|------------------------------|----------|-------|
|        | Cambridge IGCSE – March 2016 | 0606     | 22    |

## Abbreviations

| awrt | answers which round to     |
|------|----------------------------|
| cao  | correct answer only        |
| dep  | dependent                  |
| FT   | follow through after error |
| isw  | ignore subsequent working  |
| nfww | not from wrong working     |
| oe   | or equivalent              |
| rot  | rounded or truncated       |
| SC   | Special Case               |
| soi  | seen or implied            |
| WWW  | without wrong working      |

| Question | Answer                                                                                                            | Marks    | Guidance                                                                                                                                                                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (i)    | $\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-9)^{-\frac{3}{2}}$                                                         | M1       | If M0 then <b>SC1</b> for the correct answer with an extra term.                                                                                                                                                                              |
|          | $k = -\frac{5}{2}$ isw                                                                                            | A1       | condone $5 \times -\frac{1}{2}$                                                                                                                                                                                                               |
| (ii)     | $\delta y = their\left(\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=13}\right) \times h$                               | M1       |                                                                                                                                                                                                                                               |
|          | -0.3125 <i>h</i> oe                                                                                               | A1       |                                                                                                                                                                                                                                               |
| 2        | $\begin{array}{c c} A \\ \hline \\ \hline \\ 2 \\ C \\ \hline \\ C \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | B3,2,1,0 | <ul> <li>B2 for<br/>C as a proper subset of A<br/>A and B with an intersection<br/>B and C mutually exclusive</li> <li>Or</li> <li>B1 for any two of the these<br/>and</li> <li>B1 for the number of elements<br/>correctly placed</li> </ul> |
|          | 5                                                                                                                 | B1FT     | <b>FT</b> <i>their</i> 5                                                                                                                                                                                                                      |
| 3        | Integrates $9x^2 - 3x^{-2}$                                                                                       | M1       | condone one rearrangement error                                                                                                                                                                                                               |
|          | $(y=)\frac{9x^3}{3} - \frac{3x^{-1}}{-1}(+c)$                                                                     | A1       |                                                                                                                                                                                                                                               |
|          | Substitute $x = 1$ and $y = 7$ into <i>their</i> expression with 'c'                                              | M1       | <i>their</i> expression must be from an attempt to integrate                                                                                                                                                                                  |
|          | $y = 3x^3 + 3x^{-1} + 1$ oe isw                                                                                   | A1       | condone $y = 3x^3 + 3x^{-1} + c$<br>and $c = 1$ seen, isw                                                                                                                                                                                     |

| Page     | 3 Mark Scheme                                                                                  |           | Syllabus Paper                                                                                                     |
|----------|------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|
|          | Cambridge IGCSE – March 2016                                                                   |           | 0606 22                                                                                                            |
| Question | Answer                                                                                         | Marks     | Guidance                                                                                                           |
| 4 (a)    | a = 10<br>b = 6<br>c = 4<br>or $10\cos 6x + 4$                                                 | B2,1,0    | for <b>B1</b> allow correct FT of <i>c</i> from <i>a</i><br>e.g. <i>their</i> $c = 14 - their a$                   |
| (b)      | y<br>1<br>0<br>$45^{\circ}$<br>$90^{\circ}$<br>$135^{\circ}$<br>$180^{\circ}$<br>x<br>-2<br>-5 | B3,2,1,0  | Correct shape; two cycles; both maximum at 1 and minimum at $-5$ ; starting at $(0, -2)$ and ending at $(180, -2)$ |
| 5 (i)    | $2187 + 5103kx + 5103k^2x^2$                                                                   | <b>B3</b> | 1 for each term; ignore extra terms                                                                                |
| (ii)     | $2(5103k) = 5103k^2$                                                                           | M1        | must not include $x$ , $x^2$                                                                                       |
|          | <i>k</i> = 2                                                                                   | A1        | <b>A0</b> if $k = 0$ also given as a solution                                                                      |
| 6        | $\frac{x}{1+3\sqrt{3}} = \frac{5-\sqrt{3}}{6+2\sqrt{3}}$ oe soi                                | M1        |                                                                                                                    |
|          | $(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}}$ oe                                                     | M1        |                                                                                                                    |
|          | $(x=)\frac{-4+14\sqrt{3}}{6+2\sqrt{3}} \times \frac{6-2\sqrt{3}}{6-2\sqrt{3}}$                 | M1        |                                                                                                                    |
|          | p = -27, q = 23 isw                                                                            | A1 + A1   | allow $(x =) \frac{-27 + 23\sqrt{3}}{6}$                                                                           |

|    | Page 4 Mark Scheme |                                                                                                                                                                                                                         |           | Syllabus Paper                                                                                                                                     |  |
|----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    |                    | Cambridge IGCSE – March 2016                                                                                                                                                                                            |           | 0606 22                                                                                                                                            |  |
|    |                    |                                                                                                                                                                                                                         |           | _                                                                                                                                                  |  |
| Qu | lestion            | Answer                                                                                                                                                                                                                  | Marks     | Guidance                                                                                                                                           |  |
| 7  | (a)                | $\begin{pmatrix} 4 & 6 & 8 \\ -2 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 18 & 3 & 6 \\ 21 & -6 & 3 \end{pmatrix}$                                                                                                       | M1        | for attempt to multiply and subtract                                                                                                               |  |
|    |                    | $ \begin{pmatrix} -2 & 0 & 4 \end{pmatrix}  \begin{pmatrix} 21 & -6 & 3 \end{pmatrix} $ $ \begin{pmatrix} -14 & 3 & 2 \\ -23 & 6 & 1 \end{pmatrix} $ $ -\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix} oe $ | A1        |                                                                                                                                                    |  |
|    | (b) (i)            | $-\frac{1}{2} \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$ oe                                                                                                                                                        | B1 + B1   | 1 mark for $-\frac{1}{2}$ and 1 mark                                                                                                               |  |
|    |                    |                                                                                                                                                                                                                         |           | for $k \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$                                                                                             |  |
|    | (ii)               | Valid method                                                                                                                                                                                                            | M1        | $\mathbf{X}\mathbf{D}^{-1}\mathbf{D}=\mathbf{C}\mathbf{D}$                                                                                         |  |
|    |                    | $\begin{pmatrix} -8 & -6 \\ 13 & 7 \end{pmatrix}$                                                                                                                                                                       | A2,1,0    | -1 each error                                                                                                                                      |  |
|    |                    |                                                                                                                                                                                                                         |           | If M0 then <b>SC1</b> for                                                                                                                          |  |
|    |                    |                                                                                                                                                                                                                         |           | $\mathbf{DC} = \begin{pmatrix} 4 & 3 \\ -14 & -5 \end{pmatrix}$                                                                                    |  |
| 8  | (i)                | Eliminate $x$ (or $y$ )                                                                                                                                                                                                 | M1        | $3(2y-2)^{2} + (2y-2)y - y^{2} = 12$                                                                                                               |  |
|    |                    |                                                                                                                                                                                                                         |           | $3x^{2} + x\left(\frac{x+2}{2}\right) - \left(\frac{x+2}{2}\right)^{2} = 12$                                                                       |  |
|    |                    | $13y^2 - 26y = 0$ or $\frac{13}{4}x^2 - 13 = 0$ oe                                                                                                                                                                      | A1        |                                                                                                                                                    |  |
|    |                    | $13y(y-2)$ or $x^2 = 4$                                                                                                                                                                                                 | M1        |                                                                                                                                                    |  |
|    |                    | $x = -2, \qquad x = 2$                                                                                                                                                                                                  | A1        | or for $(-2, 0)$ or $(2, 2)$ from correct                                                                                                          |  |
|    |                    | y = 0 $y = 2$ isw                                                                                                                                                                                                       | +<br>A1FT | working<br><b>FT</b> <i>their x</i> or <i>y</i> values to find <i>their</i><br><i>y</i> or <i>x</i> values;<br>or <b>A1</b> for (-2, 0) and (2, 2) |  |
|    | (ii)               | their $m_{AB} = \frac{1}{2}$ or their $m_{BC} = -2$ soi                                                                                                                                                                 | M1        | may be unsimplified<br>or Pythagoras' theorem correctly<br>applied to <i>their</i> $(0, -2)$ ,<br><i>their</i> $(2, 2)$ and $(0, 6)$               |  |
|    |                    | use of $(m_{AB}) \times (m_{BC}) = -1$ and conclusion                                                                                                                                                                   | A1        | or use of $h^2 = a^2 + b^2$ and conclusion                                                                                                         |  |

| Cambridge IGCSE - March 2016060622QuestionAnswerMarksGuidance9 (i) $RT = \frac{1}{\tan \theta}$ B1or $RT = \cot \theta$ $RS = \frac{1}{\sin \theta}$ B1or $RT = \cot \theta$ B1 $x = 1 - \frac{1}{2 \tan \theta} - \frac{1}{2 \sin \theta}$ ocB1FTFT their RT and their RS, provided both are functions of ratios(ii) $A = x + \frac{1}{2} \cot \theta$ oe soiM1 $correct$ completion to given answer $A = 1 - \frac{\csc \theta}{2}$ A1(iii) $cosec \theta = \frac{2\sqrt{3}}{3}$ ocM1 $\theta = \frac{\pi}{3}$ caoA1(iii) $(\alpha + \beta)i - 20j = 15i + (2\alpha - 24)j$ M1 $\alpha = 2$ A1 $\beta = 13$ A1(iii) $\sqrt{(their \alpha + their \beta)^2 + (-20)^2}$ oeM1 $\frac{15i - 20j}{25}$ ocA1FT $(iii)$ $\overline{OC} = \overline{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$ B1 $(\overline{OC} = 1 + \lambda(b - a)$ or<br>$(\overline{OC} = 1 (1 - \lambda)a + \lambda b$ A1(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$ M1or multiplies one of the vector<br>a general scale factor and find<br>par of simultanceus equations<br>solveSolves $\mu^2 + 3\mu - 18 = 0$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Page 5     | Mark Scheme                                                                                                                                                         |            | Syllabus Paper                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| 9 (i) $RT = \frac{1}{\tan \theta}$<br>$RS = \frac{1}{\sin \theta}$<br>$x = 1 - \frac{1}{2\tan \theta} - \frac{1}{2\sin \theta}$ oc<br>$rx = 1 - \frac{\cos \theta}{2} - \frac{\cos c \theta}{2}$ oe<br>(ii) $A = x + \frac{1}{2}\cot \theta$ oc soi<br>correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$<br>(iii) $c \csc \theta - \frac{2\sqrt{3}}{3}$ oe<br>$\theta = \frac{\pi}{3}$ cao<br>$A = \frac{\pi}{3}$ cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Ŭ          |                                                                                                                                                                     |            |                                                                                                                         |
| 9 (i) $RT = \frac{1}{\tan \theta}$<br>$RS = \frac{1}{\sin \theta}$<br>$x = 1 - \frac{1}{2\tan \theta} - \frac{1}{2\sin \theta}$ oc<br>$\sigma r x = 1 - \frac{\cot \theta}{2} - \frac{\csc \theta}{2}$ oe<br>(ii) $A = x + \frac{1}{2}\cot \theta$ oc soi<br>$correct completion to given answer A = 1 - \frac{\csc \theta}{2}(iii) \cos \cos \theta = \frac{2\sqrt{3}}{3} oe\theta = \frac{\pi}{3} cao10 (a) (i) (\alpha + \beta)i - 20j = 15i + (2\alpha - 24)j\alpha = 2\beta = 13(ii) \frac{15i - 20j}{2} oe(b) \overline{OC} = \overline{OA} + \lambda \overline{AB} or \overline{OC} = OB + (1 - \lambda)\overline{BA}(ii) \frac{15i - 20j}{(\overline{OC} = 1)} = 1 + (1 - \lambda)(\alpha - b)(\overline{OC} = 1 + (1 - \lambda)(\alpha - b)(\overline{OC} = \frac{2}{(1 - \lambda)\alpha + \lambda - b}(c) \frac{2}{\mu + 3} = \frac{\mu}{9}Solves \mu^2 + 3\mu - 18 = 0MI or RT = \cot \thetaB1 implies M1implies M1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |            |                                                                                                                                                                     |            | C '1                                                                                                                    |
| $RS = \frac{1}{\sin\theta}$ B1or $RS = \csc\theta$ $x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta}$ oeB1FTFT their RT and their RS,<br>provided both are functions of<br>ratios(ii) $A = x + \frac{1}{2}\cot\theta$ oc soiM1correct completion to given answer $A = 1 - \frac{\csc\theta}{2}$ A1(iii) $\cos \theta = \frac{2\sqrt{3}}{3}$ ocM1equivalent must be exact $\theta = \frac{\pi}{3}$ caoA1implies M1implies M110(a) $(a + \beta)i - 20j = 15i + (2\alpha - 24)j$ M1 $\mu = 2$ A1 $\beta = 13$ A1(ii) $\sqrt{(thetra + their \beta)^2 + (-20)^2}$ oeM1 $\frac{15i - 20j}{25}$ oeA1 $\frac{10}{(CC} = j a + \lambda(A = a) \text{ or } (CC = OB + (1 - \lambda)BA$ B1 $(C)$ $\frac{2}{\mu + 3} = \frac{\mu}{9}$ M1(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$ M1solves $\mu^2 + 3\mu - 18 = 0$ M1or multiplies one of the vector<br>a general scale factor and find<br>heir scale factor and find<br>pair of simultaneous equation<br>find their scale factor and find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qu   | estion     | Answer                                                                                                                                                              | Marks      | Guidance                                                                                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9    | (i)        | $RT = \frac{1}{\tan \theta}$                                                                                                                                        | <b>B</b> 1 | or $RT = \cot \theta$                                                                                                   |
| (ii) $A = x + \frac{1}{2} \cot \theta$ oc soi<br>(ii) $A = x + \frac{1}{2} \cot \theta$ oc soi<br>(iii) $Correct completion to given answer A = 1 - \frac{\csc \theta}{2}(iii) Cosec \theta = \frac{2\sqrt{3}}{3} oe\theta = \frac{\pi}{3} cao(iii) Cosec \theta = \frac{2\sqrt{3}}{3} oe\theta = \frac{\pi}{3} cao(iv) Cosec \theta = \frac{2\sqrt{3}}{3} oe\theta = \frac{\pi}{3} cao(iv) Cosec \theta = \frac{2\sqrt{3}}{2} oeA = 2\beta = 13(iv) \sqrt{(their\alpha + their\beta)^2 + (-20)^2} oe(iv) \frac{15i - 20j}{25} oe(iv) 15i - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            | $RS = \frac{1}{\sin \theta}$                                                                                                                                        | B1         | or $RS = \csc \theta$                                                                                                   |
| (iii) $2$<br>correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$<br>(iii) $\cos c \theta = \frac{2\sqrt{3}}{3}$ oc<br>$\theta = \frac{\pi}{3}$ cao<br>A1<br>implies M1<br>implies M1<br>implied by $\alpha + \beta = 15$<br>or $2\alpha - 24 = -20$<br>A1<br>A1<br>(i) $(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$<br>$\alpha = 2$<br>$\beta = 13$<br>(ii) $\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oc<br>A1<br>$\frac{15\mathbf{i} - 20\mathbf{j}}{25}$ oe<br>(b) $\overline{OC} = \overline{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$<br>$[\overline{OC} = \mathbf{j} + \lambda(\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = \mathbf{j} + \lambda(\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = \mathbf{j} + (1 - \lambda)(\mathbf{a} - \mathbf{b})]$<br>$[\overline{OC} = \mathbf{j} (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$<br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$<br>Solves $\mu^2 + 3\mu - 18 = 0$<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |            | $x = 1 - \frac{1}{2\tan\theta} - \frac{1}{2\sin\theta}$ oe<br>or $x = 1 - \frac{\cot\theta}{2} - \frac{\csc\theta}{2}$ oe                                           | B1FT       | provided both are functions of trig                                                                                     |
| (iii) $\cos cose \theta = \frac{2\sqrt{3}}{3}$ oeM1equivalent must be exact $\theta = \frac{\pi}{3}$ caoA1implies M110 (a) (i) $(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$ M1implied by $\alpha + \beta = 15$<br>or $2\alpha - 24 = -20$ $\alpha = 2$ A1 $\beta = 13$ A1(ii) $\sqrt{(their \alpha + their \beta)^2 + (-20)^2}$ oeM1 $\frac{15\mathbf{i} - 20\mathbf{j}}{25}$ oeA1FT $\frac{15\mathbf{i} - 20\mathbf{j}}{25}$ oeA1FT $\frac{10}{CC} = \mathbf{i} + \lambda (\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = ] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$ B1 $(\mathbf{c})$ $\frac{2}{\mu + 3} = \frac{\mu}{9}$ (c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$ M1or multiplies one of the vector<br>a general scale factor and find<br>pair of simultaneous equations<br>solveSolves $\mu^2 + 3\mu - 18 = 0$ M1or solves their correct equation<br>find their scale factor and atter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (    | ii)        | $A = x + \frac{1}{2}\cot\theta  \text{oe soi}$                                                                                                                      | M1         |                                                                                                                         |
| $\theta = \frac{\pi}{3} \text{ cao}$ A1 implies M1 implies M1 implied by $\alpha + \beta = 15$ or $2\alpha - 24 = -20$ A1 $\beta = 13$ (i) $(\alpha + \beta)i - 20j = 15i + (2\alpha - 24)j$ A1 $\beta = 13$ (ii) $\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe M1 $\frac{15i - 20j}{25}$ oe M1 $\frac{15i - 20j}{25}$ oe M1 $\frac{15i - 20j}{25}$ oe M1 $\frac{16i}{CC} = ] \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$ or $\overline{CC} = OB + (1 - \lambda)\overline{BA}$ B1 $\overline{(OC} = ] \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$ or $\overline{(OC} = ] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$ $\overline{(OC} = ] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ A1 (c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$ Solves $\mu^2 + 3\mu - 18 = 0$ M1 or solves their correct equations solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            | correct completion to given answer $A = 1 - \frac{\csc \theta}{2}$                                                                                                  | A1         |                                                                                                                         |
| <b>10</b> (a) (i) $(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$<br>$\alpha = 2$<br>$\beta = 13$<br>(ii) $\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe<br><b>M1</b><br>$\frac{15\mathbf{i} - 20\mathbf{j}}{25}$ oe<br><b>M1</b><br><b>M1</b><br>(c) $\frac{12}{QC} = \mathbf{i} + \lambda(\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = \mathbf{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$<br><b>B1</b><br>$[\overline{OC} = \mathbf{i} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$<br>$[\overline{OC} = \mathbf{i} (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$<br><b>A1</b><br><b>M1</b><br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$<br><b>M1</b><br>Solves $\mu^2 + 3\mu - 18 = 0$<br><b>M1</b><br>or solves their correct equations solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (i   | ii)        | $\csc \theta = \frac{2\sqrt{3}}{3}$ oe                                                                                                                              | M1         | equivalent must be exact                                                                                                |
| (i) $\alpha = 2$<br>$\beta = 13$<br>(ii) $\sqrt{(their \alpha + their \beta)^2 + (-20)^2}$ oe<br>$\frac{15i - 20j}{25}$ oe<br>(b) $\overline{OC} = \overline{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$<br>$[\overline{OC} = ] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = ] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$<br>$[\overline{OC} = ] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$<br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$<br>Solves $\mu^2 + 3\mu - 18 = 0$<br>M1 or solves their correct equations solve<br>M1 or solves their correct equations for the vector and attern their scale factor and scale factor and attern their scale factor and attern their scale factor and scale facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            | $\theta = \frac{\pi}{3}$ cao                                                                                                                                        | A1         | implies M1                                                                                                              |
| (ii) $ \begin{array}{c c} \beta = 13 \\ \hline \hline \hline \hline \hline \\ \sqrt{(their\alpha + their\beta)^2 + (-20)^2} & \text{oe} \\ \hline \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ \hline \\ 15i - 20j \\ 25 & \text{oe} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 ( | (a) (i)    | $(\alpha + \beta)\mathbf{i} - 20\mathbf{j} = 15\mathbf{i} + (2\alpha - 24)\mathbf{j}$                                                                               | M1         |                                                                                                                         |
| (ii) $\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe M1<br>$\frac{15i - 20j}{25}$ oe A1FT FT their $\alpha + \beta$ provided non-zero<br>(b) $\overline{OC} = \overline{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$ B1<br>$[\overline{OC} = ] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})$ or $[\overline{OC} = ] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$ M1<br>$[\overline{OC} = ] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ A1<br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$ M1 or multiplies one of the vector a general scale factor and find pair of simultaneous equations solve<br>Solves $\mu^2 + 3\mu - 18 = 0$ M1 or solves their correct equation find their scale factor and attention of the their scale factor and atten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |            | $\alpha = 2$                                                                                                                                                        | A1         |                                                                                                                         |
| (b) $\frac{15i - 20j}{25}$ oe<br>$\frac{15i - 20j}{25}$ oe<br>(b) $\overline{OC} = \overline{OA} + \lambda \overline{AB}$ or $\overline{OC} = OB + (1 - \lambda)\overline{BA}$<br>$[\overline{OC} = ] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})$ or<br>$[\overline{OC} = ] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$<br>$[\overline{OC} = ] (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$<br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$<br>Solves $\mu^2 + 3\mu - 18 = 0$<br>M1 FT <i>their</i> $\alpha + \beta$ provided non-zero<br>B1<br>M1<br>M1<br>or multiplies one of the vector<br>a general scale factor and finds<br>pair of simultaneous equations<br>solve<br>M1 or solves <i>their</i> correct equations<br>find <i>their</i> scale factor and attent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |            | $\beta = 13$                                                                                                                                                        | A1         |                                                                                                                         |
| (b) $\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB} \text{ or } \overrightarrow{OC} = OB + (1 - \lambda) \overrightarrow{BA}$<br>$\overrightarrow{IOC} = \mathbf{J} \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{IOC} = \mathbf{J} \mathbf{b} + (1 - \lambda) (\mathbf{a} - \mathbf{b})$<br>$\overrightarrow{IOC} = \mathbf{J} (1 - \lambda) \mathbf{a} + \lambda \mathbf{b}$<br>(c) $\frac{2}{\mu + 3} = \frac{\mu}{9}$<br>Solves $\mu^2 + 3\mu - 18 = 0$<br>MI $\mathbf{M}$<br>MI $\mathbf{M}$<br>MI $\mathbf{M}$<br>or multiplies one of the vector a general scale factor and finds pair of simultaneous equations solve<br>MI $\mathbf{M}$<br>or solves their correct equation find their scale factor and atterned to the their scale factor and the their scale factor and atterned to the their scale factor and the their sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | (ii)       | $\sqrt{(their\alpha + their\beta)^2 + (-20)^2}$ oe                                                                                                                  | M1         |                                                                                                                         |
| $\begin{bmatrix} \overrightarrow{OC} = \mathbf{j} \ \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or } \\ [\overrightarrow{OC} = \mathbf{j} \ \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b}) \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \ \mathbf{b} \ (1 - \lambda)\mathbf{c} \ (1 - \lambda)\mathbf{a} \ \mathbf{b} \ (1 - \lambda)\mathbf{c} \ (1 - \lambda)$                                                |      |            |                                                                                                                                                                     | A1FT       | <b>FT</b> <i>their</i> $\alpha + \beta$ provided non-zero                                                               |
| $\begin{bmatrix} \overrightarrow{OC} = \mathbf{j} \ \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or } \\ [\overrightarrow{OC} = \mathbf{j} \ \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b}) \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{OC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \\ [\overrightarrow{DC} = \mathbf{j} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \ (1 - \lambda)\mathbf{b} \ (1 - \lambda)\mathbf{a} + \lambda \ \mathbf{b} \ (1 - \lambda)\mathbf{b} \ (1 - \lambda)\mathbf{b} \ (1 -$ | (    | <b>b</b> ) | $\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AB}$ or $\overrightarrow{OC} = OB + (1 - \lambda)\overrightarrow{BA}$                          | <b>B</b> 1 |                                                                                                                         |
| (c) $\frac{2}{\mu+3} = \frac{\mu}{9}$<br>Solves $\mu^2 + 3\mu - 18 = 0$<br>M1 or multiplies one of the vector a general scale factor and finds pair of simultaneous equations solve<br>M1 or solves <i>their</i> correct equation find <i>their</i> scale factor and attention of the solution of the solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            | $[\overrightarrow{OC} =] \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) \text{ or}$<br>$[\overrightarrow{OC} =] \mathbf{b} + (1 - \lambda)(\mathbf{a} - \mathbf{b})$ | M1         |                                                                                                                         |
| Solves $\mu^2 + 3\mu - 18 = 0$<br>M1 or solves <i>their</i> correct equation<br>find <i>their</i> scale factor and attention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |                                                                                                                                                                     | A1         |                                                                                                                         |
| find <i>their</i> scale factor and atten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (    | (c)        | $\frac{2}{\mu+3} = \frac{\mu}{9}$                                                                                                                                   | M1         | or multiplies one of the vectors by<br>a general scale factor and finds a<br>pair of simultaneous equations to<br>solve |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |            | Solves $\mu^2 + 3\mu - 18 = 0$                                                                                                                                      | M1         | or solves <i>their</i> correct equation to<br>find <i>their</i> scale factor and attempts<br>to use it to find $\mu$    |
| $\mu = 3$ A1 A0 if -6 not discarded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |            | $\mu = 3$                                                                                                                                                           | A1         | A0 if -6 not discarded                                                                                                  |

| F      | Page 6 | Mark Scheme                                                                                                               |         | Syllabus Paper                                                                               |
|--------|--------|---------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------|
|        |        | Cambridge IGCSE – March 2016                                                                                              |         | 0606 22                                                                                      |
| Quest  | tion   | Answer                                                                                                                    | Marks   | Guidance                                                                                     |
| 11 (i) |        | $\frac{dy}{dx} = \frac{(x^2 + 1)(1) - (x)(2x)}{(x^2 + 1)^2}  \text{oe}$                                                   | M1*     | Attempts to differentiate using the quotient rule                                            |
|        |        |                                                                                                                           | A1      | correct; allow unsimplified                                                                  |
|        |        | $their(1-x^2) = 0$                                                                                                        | M1 dep* |                                                                                              |
|        |        | x = 1, x = -1                                                                                                             | A1      | from correct working only                                                                    |
|        |        | y = 0.5, $y = -0.5$ oe                                                                                                    | A1      | from correct working only                                                                    |
|        |        |                                                                                                                           |         | or A1 for each of $(1, 0.5)$ ,<br>(-1, -0.5) oe from correct<br>working;                     |
|        |        |                                                                                                                           |         | unsupported answers do not score                                                             |
| (ii)   |        | $\frac{d}{dx} \left( \left( x^2 + 1 \right)^2 \right) = 2 \left( x^2 + 1 \right) (2x) \text{ soi}$                        | B1      | $\frac{d}{dx}\left(x^4 + 2x^2 + 1\right) = 4x^3 + 4x$                                        |
|        |        | $\frac{d^2 y}{dx^2} = (x^2 + 1) \frac{(x^2 + 1)(their - 2x) - (their(1 - x^2))(2x)}{(x^2 + 1)^4}$                         | M1      | Applies quotient rule and factors out                                                        |
|        |        | Correct completion to given answer $\frac{d^2 y}{dx^2} = \frac{2x^3 - 6x}{(x^2 + 1)^3}$                                   | A1      |                                                                                              |
|        |        | When $x = 1$ their $\frac{d^2 y}{dx^2}\Big _{x=1} = \frac{2(1)^3 - 6(1)}{(1^2 + 1)^3}$ oe < 0 therefore maximum           | B1FT    | Complete method including comparison to 0; <b>FT</b> <i>their</i> first or second derivative |
|        |        | When $x = -1$ their $\frac{d^2 y}{dx^2}\Big _{x=-1} = \frac{2(-1)^3 - 6(-1)}{((-1)^2 + 1)^3}$ oe > 0<br>therefore minimum | B1FT    | Complete method including comparison to 0; <b>FT</b> <i>their</i> first or second derivative |

| Page 7   | Mark Scheme<br>Cambridge IGCSE – March 2016                                                                                                                                |        | Syllabus Paper<br>0606 22                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------|
| Question | Answer                                                                                                                                                                     | Marks  | Guidance                                                                       |
| 12 (i)   | $9t^{2} - 63t + 90 = 0$<br>(9t - 18)(t - 5)                                                                                                                                | M1     |                                                                                |
|          | showing that $t = 2$ is smaller value of $t$                                                                                                                               | A1     | must see evidence of solving<br>e.g. $t = 5$ and $t = 2$ or factors            |
| (ii)     | $(a=)\frac{\mathrm{d}v}{\mathrm{d}t}$ attempted                                                                                                                            | M1     |                                                                                |
|          | 18(3.5) - 63 = 0 cao                                                                                                                                                       | A1     |                                                                                |
| (iii)    | $\int (9t^2 - 63t + 90) dt$                                                                                                                                                | M1     |                                                                                |
|          | $(s=)\frac{9t^3}{3} - \frac{63t^2}{2} + 90t$ isw                                                                                                                           | A2,1,0 | -1 for each error or for $+c$ left in                                          |
| (iv) (a) | $18(3.5) - 63 = 0 \text{ cao}$ $\int (9t^2 - 63t + 90) dt$ $(s =) \frac{9t^3}{3} - \frac{63t^2}{2} + 90t \text{ isw}$ $(s =) \frac{9(2)^3}{3} - \frac{63(2)^2}{2} + 90(2)$ | M1     | or $\left[\frac{9t^3}{3} - \frac{63t^2}{2} + 90t\right]_0^2$<br>FT their (iii) |
|          | 78 [m]                                                                                                                                                                     | A1     |                                                                                |
| (b)      | $(s=)\frac{9(3)^3}{3} - \frac{63(3)^2}{2} + 90(3) = 67.5$                                                                                                                  | M1     | FT their (iii)                                                                 |
|          | <i>their</i> 78 + 10.5 = 88.5 [m]                                                                                                                                          | A1FT   |                                                                                |