

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020
Publications Code 4MA1_2HR_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

o M marks: method marks

o A marks: accuracy marks

o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 2, 6, 15, 18 and 26, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1	0.4×280 oe		2	M1
		112		A1 cao
				SC B1 for 168
				Total 2 marks

2	880 2 880 2 440 2 220 8 11 2 9 2 110 5 55 11 11 2 2		3	M1	for continual prime factorisation (at least two correct steps anywhere) or at least two stages of a factor tree, or table, correct. eg if first stage wrong, 800×80 then $800 = 80 \times 10$ and $80 = 40 \times 2$ would count as 2 correct steps.
		$2^4 \times 5 \times 11$		M1	dep M1 for a fully correct factor tree or a list $(2,2,2,2,5,11)$ condone inclusion of 1's on branch ends. or $2 \times 2 \times 2 \times 2 \times 5 \times 11$ dep M2 for $2^4 \times 5 \times 11$ (with
		2 0 11		111	working seen)
					Total 3 marks

3 (a)	2 460 000	1	B1 accept 2,460,000 or 246 0000
(b)	7.4×10^{-4}	1	B1
(c)		2	M1 for correct value not in standard form e.g. 58.3×10^5 or 583×10^4 or 0.583×10^7 oe
	5 830 000		A1 5 830 000 or 5.83×10^6 do not isw.
			Total 4 marl

4		3	M1	for one of
				- 5 numbers with a median of 8
				- 5 numbers with a mode of 5
				- 5 numbers with a range of 10
				- 5 numbers with a sum of 45
		_	M1	for two of
				- 5 numbers with a median of 8
				- 5 numbers with a mode of 5
				- 5 numbers with a range of 10
				- 5 numbers with a sum of 45
	5, 5, 8, 12, 15		A1	Note: The numbers can be in any
				order
				SC If no marks awarded, give B1
				for 8 in the middle cell, not
				contradicted.
				Total 3 marks

5 (a)	33.75	1	B1 oe eg 33.750
(b)	33.85	1	B1 allow 33.849 or 33.849 or
			"33.8499"
			do NOT allow 33.879 without
			indication of recurring "9"
			Total 2 marks

6	$\frac{70 \times 40}{0.02}$ or $\frac{68 \times 40}{0.02}$ or $\frac{70 \times 43}{0.02}$ or $\frac{68 \times 43}{0.02}$		2	M1	for a correct expression using a suitable approximation. 0.02 is the only acceptable denominator.
	$\frac{70 \times 40}{0.02} = 140000 \text{ or}$ $\frac{68 \times 40}{0.02} = \frac{2720}{0.02} = 136000 \text{ or}$ $\frac{70 \times 43}{0.02} = \frac{3010}{0.02} = 150500 \text{ or}$ $\frac{68 \times 43}{0.02} = \frac{2924}{0.02} = 146200$	Correct figures		A1	If student says 'no' then do not award the A mark rounded expression and evaluated answer required Intermediate step required unless rounded to 1sf For each, $\times 50$ (oe) may be seen in intermediate step. eg $\frac{68 \times 40}{0.02} = 2720 \times 50 = 136000$
					Total 2 marks

7	$4.3^2 + 6.4^2$ or 59.45		4	M1	for squaring and adding
	$\sqrt{4.3^2 + 6.4^2}$ or $\sqrt{59.45}$			M1	dep 1st M1 for square rooting
	or 7.71(038) or 7.7				
	e.g ('7.71' + 4.3 + 6.4) × 22 or '18.4' × 22 (=404.8) or ('8' + 4.3 + 6.4) × 22 or '18.7' × 22 or '19' × 22 or '20' × 22			M1	dep M2 for a non-rounded perimeter × 22 or 19 × 22 accept 20 × 22 oe
		\$418		A1	cao
					Total 4 marks

8	$15 \times 24 = 360$ or $25 \times 18 = 450$		3	M1	may be implied by 810 seen
	$\frac{'360'+'450'}{(=810)}$			M1	dep on M1
	${40}$ $({40})$				
		20.25 oe		A1	for 20.25
					accept 20.3 (allow 20 from correct
					working)
					Total 3 marks

Total 3 marks

(a)			2	M1	for $(x \pm 6)(x \pm 7)$
(a)		(n+6)(n-7)			
		(x+6)(x-7)		Al	for $(x+6)(x-7)$ or $(x-7)(x+6)$ isw roots given if candidate solves the
					quadratic = 0
(b)	$\frac{2r}{2r} = \frac{9r}{2} = \frac{2}{15} = \frac{15}{2} = \frac{2}{9r} = \frac{2r}{2r}$		2	M1	accept as equation or with the wrong
(0)	3x - 8x < 3 - 15 of $13 - 3 < 8x - 3x$		3	1711	inequality sign.
	5x < 12 or 12 < 5x			М1	accept as equation or with the wrong
	$-3\lambda < 12$ or $12 < 3\lambda$			1711	inequality sign.
		r > 2.4		A 1	. 12
		X - 2.1		711	Accept 2.4 < x or $x > \frac{12}{5}$ oe
					allow $(-\infty, 2.4)$
					award M1 M1 A0 for 2.4 with = sign or no
					inequality or incorrect inequality sign.
					Total 5 marks
(a)		0		1	B1 condone 150°
(b)		-2		1	B1 condone 3 ⁻²
					Total 2 marks
	0 1: 1		1 2	3.61	0 1 1
	See appendix 1		3	MI	for $y = x$ correctly drawn
				3.61	solid or dashed line accepted
				MI	indep for $x = 4$ and $y = -2$ correctly
					drawn
				A 1	solid or dashed line accepted
		_		Al	for correct region identified
		identified			region may be shaded or left unshaded
					Condone missing label if region is clear and no contradictory labels
		(b) $3x - 8x < 3 - 15 \text{ or } 15 - 3 < 8x - 3x$ $-5x < -12 \text{ or } 12 < 5x$	(b) $3x - 8x < 3 - 15 \text{ or } 15 - 3 < 8x - 3x$ -5x < -12 or 12 < 5x (a) 0 (b) -2	(b) $3x - 8x < 3 - 15 \text{ or } 15 - 3 < 8x - 3x$ 3 $-5x < -12 \text{ or } 12 < 5x$ $x > 2.4$ (a) 0 (b) -2 See appendix 1 3 Correct region	(a) (a) (b) (a) (b) (a) (b) (a) (b) (b) (b) (c)

12	$y = \frac{7-5x}{2}$ or $y = \frac{7}{2} - \frac{5}{2}x$ or $y = 3.5 - 2.5x$ or $2y = 7 - 5x$ oe		2	M1 for making y or 2y the subject Allow $y = -\frac{5}{2}x + c$ oe
		-2.5		A1 for $-\frac{5}{2}$ or -2.5
				Total 3 marks

13	$\cos 35^\circ = \frac{15}{AB} \text{ or } \sin 55^\circ = \frac{15}{AB}$		5	M1 oe eg x for AB
	or $\frac{15}{\sin 55} = \frac{JB}{\sin 35}$ and $(AB^2 =) ("10.50")^2 + 15^2$			
	or $\tan 35^\circ = \frac{JB}{15}$ and $(AB^2 =) ("10.50")^2 + 15^2$			
	$(AB =) \frac{15}{\cos 35^{\circ}} (=18.3)$			M1
	or $(AB =) \frac{15}{\sin 55^{\circ}} (=18.3)$			
	or $(AB =)\sqrt{("10.50")^2 + 15^2}$			
	or $(AB =)\sqrt{(15 \tan 35)^2 + 15^2}$			
	'18.3' × 4 (= 73.2)			M1 dep 1st M1
	$80 - 18.3 \times 4 \text{ or } 80 - 73.2$			M1 dep 1st M1
		6.75		A1 accept 6.75 – 6.8
				Total 5 marks

Alternativ	Alternative Mark Scheme for Q13 [do not mix and match with above MS]							
13	$15 \times 4 (= 60)$		5	M1				
	$\cos 35^{\circ} = \frac{'60'}{AE}$ or $\sin 55^{\circ} = \frac{'60'}{AE}$			M1				
	$(AE =) \frac{'60'}{\cos 35^{\circ}} = 73.2$ or $(AE =) \frac{'60'}{\sin 55^{\circ}} = 73.2$			M1	dep 1st M1			
	80 – '73.2'			M1				
		6.75		A1	accept 6.75 - 6.8			
						Total 5 marks		

14 ((a)	35 37 38 39 41 42 43 44 45 47 47		3	M1	Ordering values (allow 1 error)
						error may include missing a value
						May be implied by correct values
						for LQ and UQ.
					M1	LQ = 38 and $UQ = 45$ identified
			7		A1	
((b)		January and reason	1	B1	ft from part (a)
			using IQR			January as the IQR is lower oe
						ignore irrelevant statements about
						the median if given in addition to
						correct statements about IQR.
	·					Total 4 marks

15	$\pi \times 2.5^2 \times 15 \ (=93.75\pi = 294.5243)$		5	M1	for using the formula for volume of cylinder
	$21.5 = \frac{m}{"294.5243"}$			M1	for using $d = \frac{m}{v}$ with their intended volume v
	$(m =) 21.5 \times '294.5243' (= 6332.272692)$			M1	for rearranging for $m = d \times v$
	'6332.27269' ÷ 1000 × 5 (=31.661) or '6332.27269' ÷ 6 ÷ 1000 (= 1.055) or '6332.27269' × 5 and 30 × 1000 (=30 000) or 30 ÷ ('6332.27269' ÷ 1000) (= 4.7376)			M1	for a correct calculation that would enable a conclusion to be made based on mass
		No and correct comparable figure(s)		A1	for No oe and (31.6 to 31.7 or 1.05 to 1.06 or 4.70 to 4.74) seen
					Total 5 marks

Alternative Ma	rk Scheme for Q15				
15	$\pi \times 2.5^2 \times 15 \ (=93.75\pi = 294.5243)$		5	M1	for using the formula for volume of cylinder
	$21.5 = \frac{30000}{v} \text{ or } 21.5 = \frac{30000 \div 5}{v}$			M1	for using $d = \frac{m}{v}$ with given d and m
	$(v =) \frac{30000}{21.5} (=1395.34)$			M1	for rearranging for $v = \frac{m}{d}$ for either
	or $(v =) \frac{30000}{21.5 \times 5} (=279.069)$				one nugget, or all five nuggets.
	"1395.34" and "294.52" × 5 (= 1472.62) or "279.06" and "294.52"			M1	for correct calculations that would enable a conclusion to be made based on volumes
		No and correct comparable figure(s)		A1	awrt 3sf
					Total 6 marks

16	(a) (i)	40	2	B1	cao (may be written on the diagram)
	(ii)	Angles in same		B1	or <u>angles</u> at the <u>circumference</u> from the same
		segment (are equal)			arc of the circle
					or <u>angles</u> on the <u>same</u> arc of the circle
					Alternatively: (two applications of)
					Opposite angles of a cyclic quadrilateral sum
					to 180°
	(b)	140	1	B1	cao (may be written on the diagram)
					Total 3 marks

17	$yn^2 = n^2 + d$ or $y = 1 + \frac{d}{n^2}$		4	M1
	$yn^2 - n^2 = d$ or $-d = n^2 - yn^2$ or $y - 1 = \frac{d}{n^2}$			M1
	$n^{2}(y-1) = d$ or $-d = (1-y)n^{2}$			M1 for factorising n^2 from a suitable expression. or $n^2 = \frac{d}{y-1}$
		$n = \sqrt{\frac{d}{y - 1}}$		A1 $Accept n = \sqrt{\frac{-d}{1-y}}$ Penalise $\pm $
				Total 4 marks

		<u> </u>				
18	(a)		(-4.5) 3 4.5 (3)	2	B2	for all correct
			1.5 (3) 10.5		(B1	for any two correct)
						No points in table but correctly plotted
						on grid, award mark
	(b)	(-3, -4.5) (-2,3) (-1,4.5) (0,3) (1,1.5) (2,3)	Smooth curve	2	B2	for a correct smooth curve. Points or
		(3,10.5)				curve passing through correct values
						within half a small square.
					(B1	for at least 5 points plotted correctly; ft
						from table for plotting only provided
						B1 awarded in part (a))
						2 , , ,
	(c)			2	M1	for drawing $y = -x - 1$
						with two correct points plotted and
						intersection with curve.
						or for stating $y = -x - 1$
						<u> </u>
						or for $\frac{1}{2}x^3 - 2x + 3 = -x - 1$ seen
			2.2			
			-2.3 to -2.4		A1	ft their curve dep on M1 and line
						y = -x - 1 drawn
						Total 6 marks

19	$\pi \times 12^2 \times \frac{AOC}{360} (=100)$		4	M1	oe for setting up a correct expression for the area of the sector (or equation)
	$(AOC =) \frac{100 \times 360}{\pi \times 12^2} \left(= \frac{250}{\pi} \right)$			M1	for correctly rearranging for AOC
	(Angle $ABC =$) "79.57747" ÷ 2 (= 39.7887 or $\frac{125}{\pi}$)			M1	ft dep 1 st M1 and 'x' less than 360 for dividing their 'AOC' by 2
		39.8		A1	for awrt 39.8 accept $\frac{125}{\pi}$
					Total 4 marks

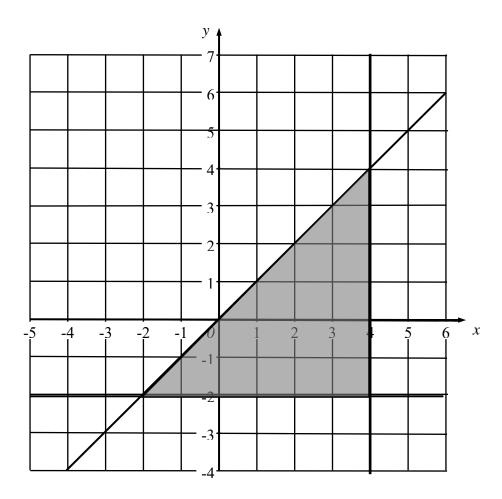
20 (a)	$T = \frac{k}{m^2}$ or $Tm^2 = k$		3	M1	for a correct equation with a
	m^2				constant
					Do not allow constant = 1
	$30 \times 0.5^2 = k \text{ or } 30 = \frac{k}{0.5^2} \text{ or } k = 7.5 \text{ or } k = \frac{15}{2}$			M1	dep on M1 for $M2$ for $k = 7.5$
	$\frac{1}{0.5^2}$ of $k = 7.5$ of $k = \frac{1}{2}$				correct substitution in a or $k = \frac{15}{2}$
					substitution in a $\frac{100 \text{ k}}{2}$
					correct equation
		$T = \frac{7.5}{m^2}$		A1	for $T = \frac{7.5}{m^2}$ or $T = \frac{15}{2m^2}$
					SCB2 for $Tm^2 = 7.5 \text{ or } Tm^2 = \frac{15}{2}$
					or $m^2 = \frac{7.5}{T}$ or $m^2 = \frac{15}{2T}$
(b)		750	1	B1	cao
					Total 4 marks

21	at least two of (3.2 × 15 (=48) or 3.6 × 5 (=18) or 0.6 × 10 (=6) or 0.2 × 20 (=4) or at least two of (140, 480, 180, 60, 40) or $\frac{14}{140} = \left(\frac{1}{10}\right)$		3	M1	for any one correct frequency density or 1cm ² = 2.5 or association of area with frequency eg one small square = 0.1 (on vertical axis)
	$14 + 3.2 \times 15 + 3.6 \times 5 + 0.6 \times 10 + 0.2 \times 20 \text{ or}$ $14 + 48 + 18 + 6 + 4 \text{ or}$ $(140 + 480 + 180 + 60 + 40) \times \frac{1}{10} \text{ or}$ $900 \times \frac{1}{10}$			M1	for any correct method Allow one error in their total (error may include missing a total for a bar)
		90		A1	answer from correct working
					Total 3 marks

22	$(y-4)^2 - (y-4) + y^2 = 10$ or $x^2 - x + (x+4)^2 = 10$		6	M1	for substituting linear equation into the quadratic equation
	$2y^{2}-9y+10=0 \text{ or}$ $2x^{2}+7x+6=0$			A1	for a correct equation in the form $ax^2 + bx + c = 0$ or $ax^2 + bx = -c$ or equations of the same form but in y
	$\frac{(2y-5)(y-2)=0 \text{ or}}{\frac{9\pm\sqrt{(-9)^2-(4\times2\times10)}}{2\times2}} \text{ or}$ $\frac{(2x+3)(x+2)=0 \text{ or}}{\frac{-7\pm\sqrt{7^2-(4\times2\times6)}}{2\times2}}$			M1ft	For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{-7 \pm \sqrt{49 - 48}}{4} \text{ or eg } \left(x + \frac{7}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$ $\frac{9 \pm \sqrt{81 - 80}}{4} \text{ or eg } \left(y - \frac{9}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$
	(- 1.5, 2.5) and (- 2, 2)			A1 M1	for both pairs of coordinates oe eg $\left(\frac{-3}{2}, \frac{5}{2}\right)$ accept coordinates listed as pairs, ie x_1, y_1, x_2, y_2 dep on M1 for finding length of AB
	$\sqrt{('-1.5'-'-2')^2+('2.5'-'2')^2}$	$\frac{\sqrt{2}}{2}$		A1	dep M3
					Total 6 marks

23	$\left(\frac{-1+5}{2}, \frac{6-4}{2}\right) \operatorname{or}\left(\frac{4}{2}, \frac{2}{2}\right) \operatorname{or}\left(2, 1\right)$		6	M1	for finding midpoint
	$\frac{-4-6}{5-1}$ or $\frac{6-4}{-1-5}$ or $-\frac{10}{6}$ or $-\frac{5}{3}$			M1	indep for finding the gradient of PQ
	$\frac{-1}{-\frac{10}{6}}$ or $\frac{6}{10}$ or $\frac{-1}{-\frac{5}{3}}$ or $\frac{3}{5}$ or 0.6			M1	for finding the perpendicular gradient to <i>PQ</i> (ft their stated gradient)
	$1 = \frac{3}{5}(2) + c \text{ or } c = -\frac{1}{5} \text{ or } c = -\frac{2}{10} \text{ or } c = -0.2$			M1	dep on 1st and 3rd M1 for substituting '(2, 1)' into $y = \frac{3}{5}x + c$ or find the value of c oe eg $y - \frac{3}{5}(x - 2)$
	$y = \frac{3}{5}x - \frac{1}{5}$ or $y = 0.6x - 0.2$ or $5y = 3x - 1$			A1	for a correct equation in any form
		3x - 5y - 1 = 0		A1	for $3x-5y-1=0$ or 5y-3x+1=0 or 6x-10y-2=0 oe accept in the form $ax+by=-c$ eg $3x-5y=1$ or $5y-3x=-1$ oe
					Total 6 marks

Alternativ	e Mark Scheme for Q23				
23	$(x+1)^2 + (y-6)^2$ or $(x-5)^2 + (y+4)^2$		6	M1	
	$(x+1)^2 + (y-6)^2 = (x-5)^2 + (y+4)^2$			M1	using $PA^2 = QA^2$ (for some point A on the line)
	$x^2 + 2x + 1 + y^2 - 12y + 36$ or			M1	
	$x^2 - 10x + 25 + y^2 + 8y + 16$				
	$x^{2} + 2x + 1 + y^{2} - 12y + 36 = x^{2} - 10x + 25 + y^{2} + 8y + 16$			M1	
	eg $2x+1-12y+36 = -10x+25+8y+16$			A1	for a correct linear equation in x
	or $12x + 37 = 20y + 41$				and y
		3x-5y-1=0		A1	for $3x - 5y - 1 = 0$ oe
					Total 6 marks


24 (a)	$-3(x^2-4x)+7 \text{ or } -3(x^2-4x-\frac{7}{3})$		4	M1	for factorising the expression to find b or $b = -3$ stated or shown clearly in answer.
	$-3[(x-2)^{2}] \text{ or } c = -2$ $-3[(x-2)^{2}-4]+7 \text{ or } -3[(x-2)^{2}-4-\frac{7}{3}]$			M1	or for c shown clearly in answer.
	$-3(x-2)^2 + 12 + 7 \text{ or } -3\left[\left(x-2\right)^2 - \frac{19}{3}\right]$			M1	fully correct method.
		$19-3(x-2)^2$		A1	for $19-3(x-2)^2$ oe
(b)		(2, 19)	1	B1 ft	dep on M1 in part (a) answer must follow answer from (a) if given
					Total 5 marks

Alternative mark scheme for 24						
24	(a)	$a + bx^2 + 2bcx + bc^2$		4	M1 for multiplying out $a + b(x + c)^2$ to obtain $a + bx^2 + 2bcx + bc^2$ oe	
					obtain $a + bx^2 + 2bcx + bc^2$ oe	
		$b = -3 \text{ or } 2bc = 12 \text{ or } a + bc^2 = 7 \text{ oe}$			M1 for equating coefficients	
		b = -3 and $c = -2$			M1 for correctly finding b and c	
		a = 19	$19-3(x-2)^2$		A1 for $19-3(x-2)^2$ oe	
	(b)		(2, 19)	1	B1 ft dep on M1 in part (a)	
					Total 5 marks	

	1830				1111111 1111111 1111111
25	$AB = 2\mathbf{b} - 2\mathbf{a} \text{ or } BA = 2\mathbf{a} - 2\mathbf{b}$		5	M1	for finding AB or BA or MN or NM
	$MN = 10\mathbf{a} - \mathbf{b} \text{ or } NM = -10\mathbf{a} + \mathbf{b}$				
	unur unur			1.70	uuu uuu uu
	eg $MP = -\mathbf{b} + 2\mathbf{a} + k(2\mathbf{b} - 2\mathbf{a})$ and $MP = l(10\mathbf{a} - \mathbf{b})$			M2	for writing eg MP or PN or AP or
	or eg $MP = \mathbf{b} + k(2\mathbf{a} - 2\mathbf{b})$ and $MP = l(10\mathbf{a} - \mathbf{b})$				AM in two different ways in terms of a
	uuu uuu				and b
	or eg $PN = 8\mathbf{a} + k(2\mathbf{a} - 2\mathbf{b})$ and $PN = l(10\mathbf{a} - \mathbf{b})$				(M1 for writing eg MP or PN or AP or AM in one way)
	or eg $AP = 8\mathbf{a} + k(\mathbf{b} - 10\mathbf{a})$ and $AP = l(2\mathbf{b} - 2\mathbf{a})$				or AM in one way)
					These may be written as eg <i>PM</i> in place
	or eg $AP = -2\mathbf{a} + \mathbf{b} + k(10\mathbf{a} - \mathbf{b})$ and $AP = l(2\mathbf{b} - 2\mathbf{a})$				of MP
	or eg $AM = k(2\mathbf{b} - 2\mathbf{a}) + l(\mathbf{b} - 10\mathbf{a})$ and $AM = -2\mathbf{a} + \mathbf{b}$				01 1/11
	1776				
	eg $2-2k=10\lambda$ and $-1+k=-\lambda$ (from MP 1st)			M1	dep M3 for writing a pair of equations
	uum				using their variables.
	or eg $2k = 10\lambda$ and $1 - 2k = -\lambda$ (from MP 2nd)				MP (1st) leads to $\lambda = \frac{1}{9}, k = \frac{4}{9}$
	or eg $8+2k=10\lambda$ and $-2k=-\lambda$ (from PN)				uut
	of eg $8+2\kappa-10\lambda$ and $-2\kappa=-\lambda$ (nom 11)				$\stackrel{\text{MP}}{MP}$ (2nd) leads to $\lambda = \frac{1}{9}, k = \frac{5}{9}$
	or eg $8-10k = -2\lambda$ and $k = 2\lambda$ (from AP 1st)				uud
	uw				PN leads to $\lambda = \frac{8}{9}, k = \frac{4}{9}$
	or eg $-2+10k = -2\lambda$ and $1-k = 2\lambda$ (from AP 2nd)				uung , , , , , , , , , , , , , , , , , , ,
	or eg $-2k-10\lambda = -2$ and $2k+\lambda = 1$ (from AM)				AP (1st) leads to $\lambda = \frac{4}{9}, k = \frac{8}{9}$
					AP (2nd) leads to $\lambda = \frac{4}{9}, k = \frac{1}{9}$
					uuur
					AM leads to $\lambda = \frac{1}{9}, k = \frac{4}{9}$
		4:5		A1	cao
					Total 5 marks
·				•	

26	$ (2+\sqrt{5}) \times AC = (2\sqrt{5}) \times (2\sqrt{5}+4+\sqrt{5}) $ or $ (2+\sqrt{5}) \times AC = (2\sqrt{5}) \times (3\sqrt{5}+4) $ or $ (2+\sqrt{5}) \times (AB+2+\sqrt{5}) = (2\sqrt{5}) \times (2\sqrt{5}+4+\sqrt{5}) $		5	M1	for using the intersecting chord theorem correctly eg may label $AB = x$ or $AC = x$ oe
	$(AC =) \frac{\left(2\sqrt{5}\right) \times \left(2\sqrt{5} + 4 + \sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \text{ or } (AC =) \frac{\left(30 + 8\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)}$			M1	dep 1st M1 for rearranging for AC may use $AB+2+\sqrt{5}$ on LHS
	$(AC =) \frac{\left(30 + 8\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \times \frac{\left(2 - \sqrt{5}\right)}{\left(2 - \sqrt{5}\right)} \text{ or}$ $(AB =) \frac{\left(21 + 4\sqrt{5}\right)}{\left(2 + \sqrt{5}\right)} \times \frac{\left(2 - \sqrt{5}\right)}{\left(2 - \sqrt{5}\right)}$			M1	indep for multiplying by the conjugate of the denominator of <i>their</i> fraction, so long as fraction in the form $\frac{a+b\sqrt{5}}{c+d\sqrt{5}}$
	$(AC =) \frac{60 - 30\sqrt{5} + 16\sqrt{5} - 40}{4 - 5} (= 14\sqrt{5} - 20) \text{ or}$ $(AB =) \frac{42 - 21\sqrt{5} + 8\sqrt{5} - 20}{4 - 5}$ $(AB =) \frac{20 - 14\sqrt{5}}{-1} - (2 + \sqrt{5})$			M1	dep 3rd M1 for multiplying out the numerator
	$(AB =) \frac{20 - 14\sqrt{5}}{-1} - (2 + \sqrt{5})$	$13\sqrt{5}-22$		A1	allow $p = 13$ and $q = -22$
					Total 5 marks

Appendix 1

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom