

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020 Publications Code 4PM1_01_2011_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$ leading to $x = ...$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$ where $|pq| = |c|$ and $|mn| = |a|$ leading to $x = ...$

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and a leading to x =

3. Completing the square:

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

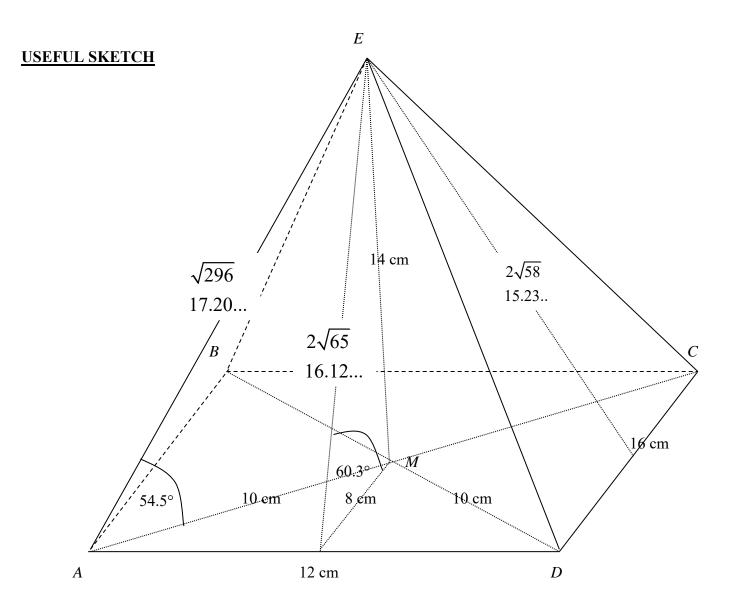
Exact answers:

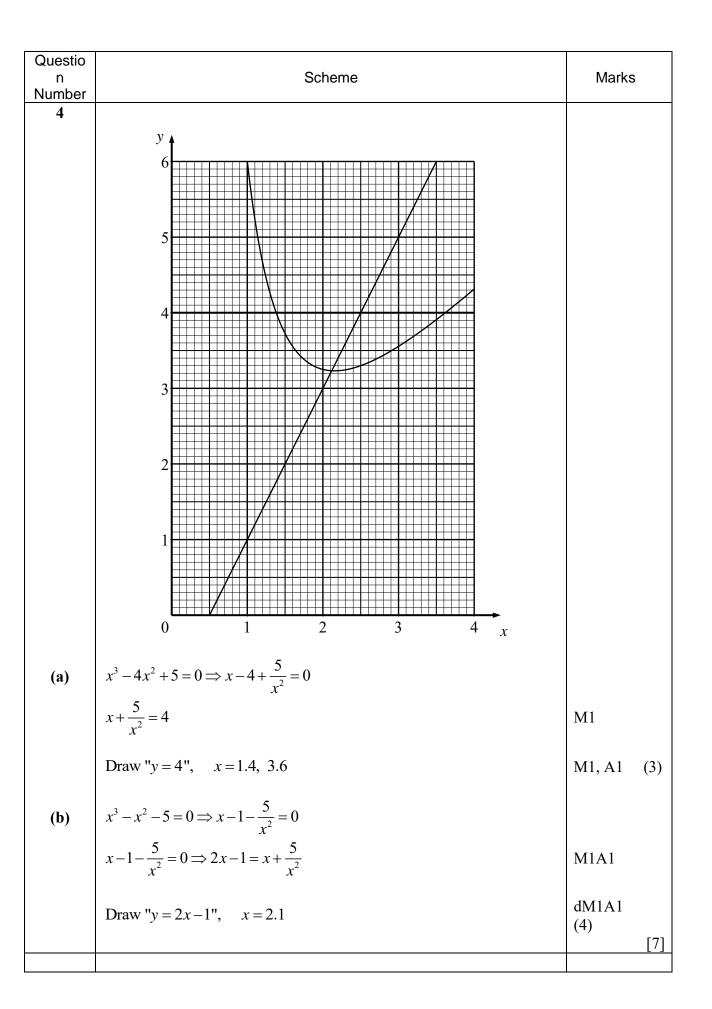
When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question Number	Scheme	Marks
1	$36xe^{3x^2}\cos 2x - 12e^{3x^2}\sin 2x$	M1A1A1 (3) [3]

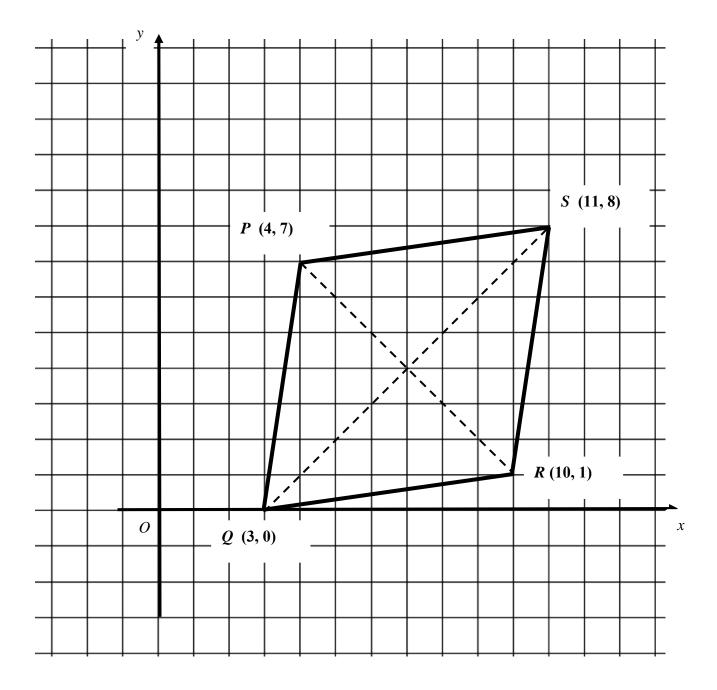

Mark	Notes
	$6e^{3x^2}\cos 2x$
M1	 For applying the Product rule There must be an attempt to differentiate both terms.
	Accept as a minimum either $e^{3x^2} \Rightarrow \pm axe^{3x^2}$ or $\cos 2x \Rightarrow -b\sin 2x$ • A correct application of product rule – accept e.g $36xe^{3x^2}\cos 2x\pm 12e^{3x^2}\sin 2x$ $\begin{bmatrix} 36xe^{3x^2}\cos 2x - 12e^{3x^2}\sin 2x \end{bmatrix}$
A1	For either $36xe^{3x^2}\cos 2x$ or $-12e^{3x^2}\sin 2x$ Need not be simplified
A1	For the fully correct expression $36xe^{3x^2}\cos 2x - 12e^{3x^2}\sin 2x$ Need not be simplified. Accept for example: $6 \times 6xe^{3x^2}\cos 2x - 6 \times 2 \times e^{3x^2}\sin 2x$


Question Number	Scheme	Mar	ks
2(a)	$\begin{array}{c} y \\ 10 \\ 6 \\ \hline \\ R \\ \hline \\ 0 \\ -5 \end{array}$	B1 B1 B1	(3)
(b)	Correct shading (in or out)	B1	(1) [4]

Part	Mark	Notes
(a)	B1	For any one correct line from $y = 6$, $y + x = 10$, $y = 2x - 5$
		Line y intercept x intercept
		y = 6 6 No intercept
		y + x = 10 10 10
		y = 2x - 5 -5 2.5
		 Accept unambiguous indication on labelled axes. Note: The line must cross both axes for the award of a mark Accept an unruled line provided the intention is clear. Look for the intersections on the axes.
	B1	For any two correct lines from $y = 6$, $y + x = 10$, $y = 2x - 5$
	B1	All three correct lines $y = 6$, $y + x = 10$, $y = 2x - 5$
	B1	For the correct region shaded in or out. <i>R</i> does not need to be written onto the sketch.

Question Number	Scheme	Marks
3(a)	$AM = \sqrt{6^2 + 8^2} = 10$	M1
	$AE = \sqrt{14^2 + 10^2} = \sqrt{296} = 17.20 = 17.2 \mathrm{cm}$	M1A1 (3)
(b)	$\tan \phi = \frac{EM}{MA} = \frac{14}{10}, \ \phi = 54.46 = 54.5^{\circ}$ or using another trig function	M1A1ft,A1(3)
(c)	$\tan \theta = \frac{EM}{\frac{1}{2}CD} = \frac{14}{8}, \theta = 60.255^{\circ} = 60.3^{\circ}$	M1A1ft,A1 (3) [9]

Part	Mark	Notes
(a)		Applies Pythagoras theorem to find the length of AM
	M1	$AM = \sqrt{6^2 + 8^2} = 10$ or $AM = \frac{\sqrt{12^2 + 16^2}}{2} = 10$
		Applies Pythagoras to find the length of one of the sloping edges
	M1	$AE = \sqrt{14^2 + 10^2} = \sqrt{296} = \dots$
		For the correct length of either AE, DE, CE or BE
	Al	$AE = 17.2 \mathrm{cm}$ rounded correctly
	ALT	Anglies Dethermony in 2D
	M1M1	Applies Pythagoras in 3D $AE = \sqrt{14^2 + 6^2 + 8^2} = \sqrt{296} = \dots$
(b)	M1	For applying any acceptable trigonometry to find the required angle.
		$ \tan \phi = \frac{EM}{MA} = \frac{14}{10}, \text{ or } \sin \phi = \frac{14}{\sqrt{296}}, \text{ or } \cos \phi = \frac{10}{\sqrt{296}} \implies \phi = \dots $
	Alft	For the correct trigonometry if they use sine or cosine following through their $\sqrt{296}$
	A1	Required angle = 54.5° Rounded correctly
(c)	M1	For applying trigonometry to find the required angle.
		$\tan \theta = \frac{EM}{\frac{1}{2}CD} = \frac{14}{8} \Longrightarrow \theta = \dots$
		OR
		The length of the perpendicular from E to the mid-point of AD is $\sqrt{260}$
		$\sin\theta = \left(\frac{14}{\sqrt{260}}\right), \text{ or } \cos\left(\frac{8}{\sqrt{260}}\right) \Rightarrow \theta = \dots$
	Alft	Ft their $\sqrt{260}$
	A1	$\theta = 60.3^{\circ}$
Round	ing: Pena	lise rounding only the first time it occurs in either (b) or (c)



Part	Mark	Notes
(a)	M1	Divides through $x^3 - 4x^2 + 5 = 0$ by x^2 and rearranges to achieve as a minimum
		$x + \frac{5}{x^2} = k$ where k is a constant
		λ
		$\left[x-4+\frac{5}{x^2}=0 \Longrightarrow x+\frac{5}{x^2}=4\right]$
	M1	Draw the line $y = k$ following through their value for k No line is M0
	A1	For the two values of $x = 1.4$ and $x = 3.6$
		Condone answers given as coordinates provided they are completely correct. $(1 4 4) = 1/2 (-4)$
		(1.4, 4) and (3.6, 4) Require both M marks for this mark.
(b)		
	M1	For setting $x + \frac{5}{x^2} = Ax + B \Longrightarrow x^3 + 5 = Ax^3 + Bx^2 \Longrightarrow Ax^3 - x^3 + Bx^2 - 5 = 0$, and
		equating coefficients with $x^3 - x^2 - 5$
		$3(4, 1) + D^2 = 5^3 + 2^2 = 5^4 + 1^2 + $
		$x^{3}(A-1)+Bx^{2}-5 \equiv x^{3}-x^{2}-5$ to achieve as a minimum $A = (\pm 2), B = (\pm 1)$
	Al	For the correct straight line $y = 2x - 1$
		o find the line $y = 2x - 1$
	M1	Divides through $x^3 - x^2 - 5 = 0$ by x^2 and rearranges the equation to achieve as a
		minimum $\Rightarrow \pm 2x \pm 1 = x + \frac{5}{x^2}$
	A1	For the correct straight line $y = 2x - 1$
	dM1	Draws their $y = 2x - 1$ on the graph and locates the point of intersection.
		Please check that they draw their line correctly. $(0.5, 0) = 1/(2.5, 4)$
		Coordinates for you to check are $(0.5, 0)$ and $(2.5, 4)$
		No line is M0
		This mark is dependent on the first M mark in (b)
	A1	For the correct value of $x = 2.1$ [allow $x = 2.2$]
		Can only score this mark from M1A1M1
		Do not accept the answer given as coordinates.

Scheme	Marks
Gradient $PR = \frac{6}{-6} = -1$, Gradient $QS = \frac{8}{8} = 1$	M1A1
Product = $-1 \Rightarrow$ perpendicular	A1 (3)
(i) $PR = \sqrt{6^2 + 6^2} = 6\sqrt{2} \left(=\sqrt{72}\right)$	M1
(ii) $QS = \sqrt{8^2 + 8^2} = 8\sqrt{2} \ \left(=\sqrt{128}\right)$	A1 (2)
Area $=\frac{1}{2}$ " $6\sqrt{2}$ "×" $8\sqrt{2}$ " = 48 (units ²)	M1A1 (2)
	Gradient $PR = \frac{6}{-6} = -1$, Gradient $QS = \frac{8}{8} = 1$ Product $= -1 \Rightarrow$ perpendicular (i) $PR = \sqrt{6^2 + 6^2} = 6\sqrt{2} (=\sqrt{72})$ (ii) $QS = \sqrt{8^2 + 8^2} = 8\sqrt{2} (=\sqrt{128})$

Part	Mark	Notes
(a)	M1	Finds the gradient of <i>PR</i> and <i>QS</i> using a correct method. This may be on a diagram.
		Gradient $PR = \frac{7-1}{4-10} = \frac{6}{-6} = -1$, Gradient $QS = \frac{8-0}{11-3} = \frac{8}{8} = 1$
	A1	Both gradients correct
		Gradient $PR = -1$, Gradient $QS = 1$
	A1	Finds the product of the two gradients with a statements that as the product = -1 then the lines are perpendicular.
(b)	M1	For either $PR = \sqrt{6^2 + 6^2} = \sqrt{72}$ or $6\sqrt{2}$ OR $QS = \sqrt{8^2 + 8^2} = \sqrt{218}$ or $8\sqrt{2}$ correct
	A1	For both $PR = \sqrt{6^2 + 6^2} = \sqrt{72}$ or $6\sqrt{2}$ AND $QS = \sqrt{8^2 + 8^2} = \sqrt{218}$ or $8\sqrt{2}$ correct
(c)	M1	<i>PQRS</i> is a kite so $=\frac{1}{2}$ " $6\sqrt{2}$ "×" $8\sqrt{2}$ " =
	A1	Area = $48 \left(\text{units}^2 \right)$
	ALT Use	es determinants
	M1	Area = $\frac{1}{2} \begin{pmatrix} 4 & 3 & 10 & 11 & 4 \\ 7 & 0 & 1 & 8 & 7 \end{pmatrix}$
		$= \frac{1}{2} \left(\left[4 \times 0 + 3 \times 1 + 10 \times 8 + 11 \times 7 \right] - \left[3 \times 7 + 10 \times 0 + 11 \times 1 + 4 \times 8 \right] \right)$
		= Allow one slip in a product
	A1	Allow one slip in a product. $10 \left(1 + \frac{1}{2}\right)$
	AI	Area = $48 \left(\text{units}^2 \right)$

USEFUL SKETCH

Question Number	Scheme	Mark	S
6(a)	$a = S_1 = 1(15 + 2 \times 1) = 17$	B1	
	$S_2 = 2(15+2\times2)(=38) = 2a+d$	M1A1	
	$2 \times 17 + d = 38 \Longrightarrow d = 4$	A1	(4)
(b)	20th term = $a + 19d = 17 + 19 \times 4 = 93$	M1A1	(2)
(c)	$S_{2p} - 2S_p = 1 + S_{p-1}$		
	2p(15+4p)-2p(15+2p)=1+(p-1)(13+2p)	M1	
	$2p^2 - 11p + 12 = 0$	A1	
	$(2p-3)(p-4) = 0 \Longrightarrow p = 4\left(p \neq \frac{3}{2}; \text{ may not be seen}\right)$	M1A1	(4)
			[10]

Part	Mark	Notes
(a)	B1	For the first term $a = 17$
		$\left[a = S_1 = 1\left(15 + 2 \times 1\right) = 17\right]$
	M1	For the second term. Uses the given summation formula to form a linear equation in
		a and d for a minimally acceptable response of $k = 2a + d$ where k is a positive integer.
	A1	For the correct linear equation $38 = 2a + d$
	A1	For the correct value of $d = 4$
	ALT 1	
	B1	For the first term $a = 17$
	M1	For using a correct summation
		formula $n(15+2n) = \frac{n}{2}(2a+[n-1]d) \Longrightarrow 30+2n = 2a-d+nd$
		and equates coefficients
	A1	For equating coefficients of <i>n</i>
		$4n = dn \Rightarrow d = \dots$ and $30 = 2a - 4 \Rightarrow a = \dots$
		For the correct value of $d = 4$

	ALT 2	
	B1	For the first term $a = 17$
	M1	Uses two values of <i>n</i> to set up a pair of simultaneous equations.e.g.
		$S_4 = 4(15+2\times4) = 92$ and $92 = \frac{4}{2}(2a+3d) \Longrightarrow 46 = 2a+3d$
		$S_5 = 5(15+2\times5) = 125$ and $125 = \frac{5}{2}(2a+4d) \Longrightarrow 50 = 2a+4d$
	A1	Attempts to solve the pair of equations
	A1	<i>d</i> = 4
(b)	M1	For using the correct <i>n</i> th term formula with their <i>a</i> and their <i>d</i>
		$U_{20} = '17' + 19 \times '4' = \dots$
	A1	For the correct 20^{th} term = 93
(c)	M1	Uses the given summation formula with the correct substitution
		2p(15+4p)-2p(15+2p)=1+(p-1)(13+2p)
	A1	For achieving the correct 3TQ
		$2p^2 - 11p + 12 = 0$
	ALT	
	M1	Uses the summation formula: Follow through their <i>a</i> and <i>d</i>
		$S_{2p} = \frac{2p}{2} (2 \times 17 + (2p-1)4) = p(30+8p)$
		$2S_{p} = 2 \times \frac{p}{2} (2 \times 17 + (p-1)4) = p(30+4p)$
		$S_{p-1} = \frac{p-1}{2} \left(2 \times 17 + \left(2[p-1] - 1 \right) 4 \right) = (p-1)(13 + 2p)$
		For a correct substitution into the given expression
		p(30+8p)-p(30+4p)=1+(p-1)(13+2p) oe
	A1	For achieving the correct 3TQ
		$2p^2 - 11p + 12 = 0$
	M1	For attempting to solve their 3TQ (provided it is a 3TQ) by any valid method.
		$2p^2 - 11p + 12 = (2p - 3)(p - 4) = 0 \Longrightarrow p =,$
	A1	For $p = 4$
		If they give both roots of their 3TQ as an answer without rejecting $p = 1.5$ A0
+	1	

Question Number	Scheme	Marks
	$x^{2} - 9x + 14 = \left(x - \frac{9}{2}\right)^{2} + 14 - \frac{81}{4} = \left(x - \frac{9}{2}\right)^{2} - \frac{25}{4}$	M1
	$a = -\frac{9}{2}, \ b = -\frac{25}{4}$ oe	A1 (2)
(b)	(i) least value of $f(x) = -\frac{25}{4}$	B1ft
	(ii) least value when $x = \frac{9}{2}$	B1ft (2)
(c)	$x + 5 = x^2 - 9x + 14$	M1
	$x^2 - 10x + 9 = 0 \Longrightarrow (x - 9)(x - 1) = 0$	M1
	Points are $(9,14)$ $(1,6)$	A1A1 (4)
(d)	Area $\int_{1}^{9} ((x+5)-(x^2-9x+14)) dx = \int_{1}^{9} (-x^2+10x-9) dx$	M1
	$= \left[-\frac{x^3}{3} + 5x^2 - 9x \right]_{1}^{9}$	M1A1
	$= \left(-243 + 405 - 81\right) - \left(-\frac{1}{3} + 5 - 9\right) = 85\frac{1}{3}$	M1A1 (5)

Part	Mark	Notes	
(a)	M1	For attempting to complete the square to achieve as a minimum	
		$x^{2}-9x+14 = \left(x \pm \frac{9}{2}\right)^{2} + 14 - k$ where k is a constant	
	A1	For the correct expression $x^2 - 9x + 14 = \left(x - \frac{9}{2}\right)^2 - \frac{25}{4}$ or $a = -\frac{9}{2}$, $b = -\frac{25}{4}$ oe stated	
(b)(i)	B1ft	For the correct value $f(x) = -\frac{25}{4}$ follow through their value of $'-\frac{25}{4}'$	
(ii)	B1ft	For the correct value of $x = \frac{9}{2}$ provided they have $\left(x - \frac{9}{2}\right)^2$ in part (a).	
		Follow through their value of $\frac{9}{2}$	

()	N/1	
(c)	M1	For equating the equation of the line with the equation of C
		$x + 5 = x^2 - 9x + 14 \Longrightarrow x^2 - 10x + 9 = 0$
	M1	and attempting to form a 3TQAttempts to solve their 3TQ by any method, provided it is the result of equating the line
	IVIII	with C
		$x^{2} - 10x + 9 = 0 \Longrightarrow (x - 9)(x - 1) = 0$
	A 1	
	A1	For the correct coordinates of either $(9,14)$ or $(1,6)$
	A1	For both correct pairs of coordinates $(9,14)$ and $(1,6)$
(d)	M1	For a correct expression for the required area with both limits correct. (ft their limits from (c)) Award this mark if they have 'curve – line' but otherwise correct.
		$\int_{1}^{9} \left((x+5) - (x^{2} - 9x + 14) \right) dx = \left[\int_{1}^{9} \left(-x^{2} + 10x - 9 \right) dx \right], \text{ accept } \int_{1}^{9} \left(x^{2} - 10x + 9 \right) dx$
		OR
		Area under the trapezium – curve
		$\frac{1}{2} \times 8 \times (6+14) - \int_{1}^{9} (x^{2} - 9x + 14) dx$
	M1	For attempting to integrate the equation for the combined expression or the curve only.
	A1	For the correct integrated expression for required area. Ignore limits for this mark – even if
		they are absent altogether.
		$\begin{bmatrix} x^3 & 5^2 & 0 \end{bmatrix}^9 \qquad (\begin{bmatrix} x^3 & 5^2 & 0 \end{bmatrix}^9$
		Area = $=\left[-\frac{x^3}{3} + 5x^2 - 9x\right]_1^9$ accept $\left[\frac{x^3}{3} - 5x^2 + 9x\right]_1^9$
		OR
		$\frac{1}{2} \times 8 \times (6+14) - \left(\frac{x^3}{3} - \frac{9x^2}{2} + 14x\right)_1^9$
		OR
		$\left[\left(\frac{x^2}{2}+5x\right)_1^9 - \left(\frac{x^3}{3}-\frac{9x^2}{2}+14x\right)_1^9 \text{ or } \left(\frac{x^3}{3}-\frac{9x^2}{2}+14x\right)_1^9 - \left(\frac{x^2}{2}+5x\right)_1^9\right]$
	M1	For substituting their limits $(x - \text{coordinates from part}(c))$ into their integrated expression.
		$= (-243 + 405 - 81) - \left(-\frac{1}{3} + 5 - 9\right) = \dots$
		OR
		$80 - \left[\left(\frac{9^3}{3} - \frac{9 \times 9^2}{2} + 14 \times 9 \right) - \left(\frac{1^3}{3} - \frac{9 \times 1^2}{2} + 14 \times 1 \right) \right] = \dots$
		OR
		$\left[\left(\frac{9^2}{2} + 5 \times 9\right) - \left(\frac{1^2}{2} + 5 \times 1\right)\right] - \left[\left(\frac{9^3}{3} - \frac{9 \times 9^2}{2} + 14 \times 9\right) - \left(\frac{1^3}{3} - \frac{9 \times 1^2}{2} + 14 \times 1\right)\right] = \dots$
	A1	For the correct area of $85\frac{1}{3}$ or $\frac{256}{3}$
		If they get a value of $-85\frac{1}{3}$ they must give a final value of $85\frac{1}{3}$ for this mark.

Question Number	Scheme	Marks
8(a)	$2xy + 5y = e^x \qquad y = \frac{e^x}{(2x+5)}$	
	$\frac{dy}{dx} = \frac{e^{x}(2x+5)-2e^{x}}{(2x+5)^{2}}$	M1A1A1
	$\frac{dy}{dx} = \frac{e^x}{(2x+5)} \times \frac{(2x+5-2)}{(2x+5)} = \frac{y(2x+3)}{(2x+5)} *$	M1A1 (5)
(b)	$x = 0 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5-2}{5^2} = \frac{3}{25}$	M1A1 (2)
ALT	$x = 0 \Longrightarrow y = \frac{1}{5}, \ \frac{dy}{dx} = \frac{1}{5} \times \frac{3}{5} = \frac{3}{25}$	
(c)	$x = 0 \Longrightarrow y = \frac{e^0}{(2 \times 0 + 5)} = \frac{1}{5}$	M1(Award if seen in (b) and used in (c))
	$y - \frac{1}{5} = -\frac{25}{3}x$	M1
	125x + 15y - 3 = 0	A1 (3) [10]

Part	Mark	Notes	
(a)	$2xy + 5y = e^x \implies y = \frac{e^x}{(2x+5)}$		
	M1	For attempting Quotient Rule	
		• Both terms must be differentiated correctly $e^x \Rightarrow e^x 2x+5 \Rightarrow 2$	
		• There must be two terms subtracted in the numerator either way around	
		• The denominator must the denominator squared.	
		$\frac{dy}{dx} = \frac{e^{x} (2x+5) - 2e^{x}}{(2x+5)^{2}}$	
	A1	For $e^x(2x+5)$ or $2e^x$	
	A1	For a fully correct differentiated expression.	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x \left(2x+5\right) - 2\mathrm{e}^x}{\left(2x+5\right)^2}$	
		$dx - (2x+5)^2$	

r			
	M1	Subs in $y = \frac{e^x}{(2x+5)}$ as a common factor Subs in $e^x = y(2x+5)$ and factorises	
		dy e^x $(2x+5-2)$ $y(2x+5-2)$ $dy - y(2x+5)(2x+5)-2y(2x+5)$	
		$\frac{dy}{dx} = \frac{e^x}{(2x+5)} \times \frac{(2x+5-2)}{(2x+5)} = \frac{y(2x+5-2)}{(2x+5)} \qquad \frac{dy}{dx} = \frac{y(2x+5)(2x+5)-2y(2x+5)}{(2x+5)^2}$	
	A1	For the correct answer with no errors. Note this is a given answer.	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(2x+3)}{(2x+5)}$	
	$\frac{1}{dx} - \frac{1}{(2x+5)}$		
		uses implicit differentiation on $2xy + 5y = e^x$	
	M1	$2\left(y+x\frac{\mathrm{d}y}{\mathrm{d}x}\right)+5\frac{\mathrm{d}y}{\mathrm{d}x}=\mathrm{e}^{x}$	
	A1	Takes out $\frac{dy}{dx}$ as a common factor $\frac{dy}{dx}(2x+5) = e^x - 2y$	
	A1	For a fully correct differentiated expression as below.	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x - 2\mathrm{y}}{(2\mathrm{x} + 5)}$	
M1 For separating the fraction, taking out <i>y</i> as a common factor and attempting to for fraction			
$\frac{dy}{dx} = \frac{e^x}{(2x+5)} - \frac{2y}{(2x+5)} = \frac{y(2x+5)}{(2x+5)} - \frac{2y}{(2x+5)} = \frac{y(2x+5-2)}{2x+5}$			
	A1	For the correct answer with no errors. $d_{11} = y(2x+3)$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(2x+3)}{(2x+5)}$		
(b)	M1		
		For substituting $x = 0$ into $\frac{dy}{dx} = \frac{e^x (2x+5) - 2e^x}{(2x+5)^2} = \frac{e^0 (2 \times 0 + 5) - 2e^0}{(2 \times 0 + 5)^2} = \dots$	
	A1	For the correct value of $\frac{dy}{dx} = \frac{3}{25}$	
	ALT		
	M1	When $x = 0 \Rightarrow y = \frac{1}{5}$, $\frac{dy}{dx} = \frac{1}{5} \times \frac{3}{5} = \dots$	
	A1	When $x = 0 \Rightarrow y = \frac{1}{5}$, $\frac{dy}{dx} = \frac{1}{5} \times \frac{3}{5} =$ For the correct value of $\frac{dy}{dx} = \frac{3}{25}$	
(c) M1 $x = 0 \Rightarrow y = \frac{e^0}{(2 \times 0 + 5)} = \frac{1}{5} x = 0 \Rightarrow y = \frac{1}{5}$ Award if seen in (b) and use		$x = 0 \Rightarrow y = \frac{e^0}{(2 \times 0 + 5)} = \frac{1}{5} x = 0 \Rightarrow y = \frac{1}{5}$ Award if seen in (b) and used in (c)	
		This is a B mark in Epen.	
	M1	Inverts the gradient found in (b) and forms equation of the normal. ft their value of y $y - \frac{1}{5} = -\frac{25}{3}x$	
	A1	Equation of line is given in the required form.	
		$\frac{125x + 15y - 3 = 0}{125x + 15y - 3 = 0}$	

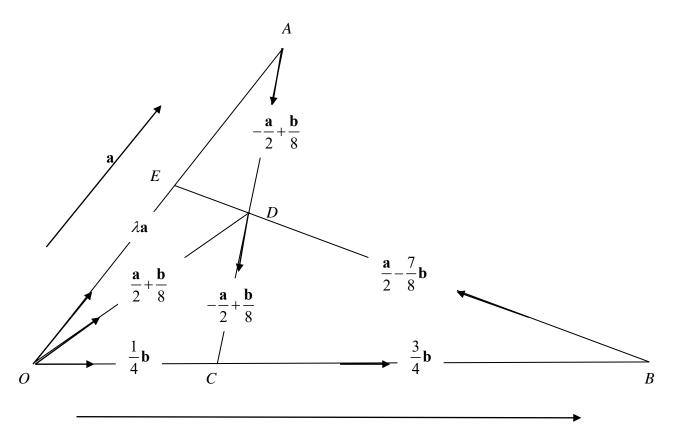
Question Number	Scheme	Ma	rks
9(a)	$\cos ADB = \frac{6^2 + x^2 - 12^2}{2 \times 6x} = \frac{x^2 - 108}{12x}$	M1A1	(2)
(b)	$\cos BDC = \frac{6^2 + x^2 - 6^2}{2 \times 6x} = \frac{x^2}{12x}$	B1	
	$ADB = 180 - BDC \Longrightarrow -\frac{x^2}{12x} = \frac{x^2 - 108}{12x}$	M1A1	
	$2x^2 = 108 \Longrightarrow x = 3\sqrt{6}$		
	$AC = 6\sqrt{6}$	A1	(4)
(c)	$\frac{\sin(\theta^{\circ} + \phi^{\circ})}{2x} = \frac{\sin BCD}{12} \Longrightarrow \frac{\sin(\theta^{\circ} + \phi^{\circ})}{x} = \frac{\sin BCD}{6}$	M1A1	
	$\frac{\sin\phi^{\circ}}{x} = \frac{\sin BCD}{6}$	M1	
	x = 0 $\therefore \sin \phi^\circ = \sin(\theta^\circ + \phi^\circ)$	A1	(4)
(d)	$\sin(\theta^{\circ} + \phi^{\circ}) = \sin \phi^{\circ} \Longrightarrow (\theta + \phi) = 180 - \phi \text{ (or } \phi \text{ or } 360 + \phi \text{ (not possible))}$	M1	
~ /	$\therefore \theta = 180 - 2\phi$	A1	(2)
			[12

Part	Mark	Notes		
(a)	M1	For using a correct cosine rule		
		$\cos ADB = \frac{6^2 + x^2 - 12^2}{2 \times 6x} = \frac{x^2 - 108}{12x} \text{ or } 12^2 = x^2 + 6^2 - 2 \times 6 \times x \cos ADB$		
	A1	Simplifies to $\cos ADB = \frac{x^2 - 108}{12x}$		
(b)	B1	For the correct expression $\cos BDC = \frac{6^2 + x^2 - 6^2}{2 \times 6x} = \frac{x^2}{12x}$		
	M1	$\cos BDC = -\cos ADB$ and $\cos BDC = -\frac{x^2}{12x}$ so $-\frac{x^2}{12x} = \frac{x^2 - 108}{12x}$ and attempts to solve		
	ALT 1 –	uses triangles BAD and BAC		
	B1	For both of the following correct expressions for cos <i>BAD</i> and cos <i>BAC</i> :		
		$\cos BAD = \frac{12^2 + x^2 - 6^2}{2 \times 12 \times x} \text{ and } \cos BAC = \frac{12^2 + (2x)^2 - 6^2}{2 \times 12 \times 2x}$		
	M1	$\angle BAC = \angle BAD$ so equates their two expressions		
		$\frac{12^2 + x^2 - 6^2}{2 \times 12 \times x} = \frac{12^2 + (2x)^2 - 6^2}{2 \times 12 \times 2x} \Longrightarrow \frac{108 + x^2}{24x} = \frac{108 + 4x^2}{48x}$ and attempts to solve		
	ALT 2 –	uses triangles BCD and BCA		

	B1	For both of the following correct expressions for cos <i>BAD</i> and cos <i>BAC</i> :			
		$\cos BCD = \frac{6^2 + x^2 - 6^2}{2 \times 6 \times x} \text{ and } \cos BCA = \frac{6^2 + (2x)^2 - 12^2}{2 \times 6 \times 2x}$			
	M1	$\frac{2 \times 6 \times 2}{(2^2 + x^2 - 6^2 + (2x)^2 - 12^2)} = \frac{2 \times 6 \times 2x}{12^2}$			
		$\frac{6^2 + x^2 - 6^2}{2 \times 6 \times x} = \frac{6^2 + (2x)^2 - 12^2}{2 \times 6 \times 2x} \Longrightarrow x^2 = 2x^2 - 54 \text{ and attempts to solve}$			
	Final A marks for all three methods				
	A1	For the correct value of $x = 3\sqrt{6}$			
	A1	For $AC = 6\sqrt{6}$			
(c)	M1	Uses sine rule on triangle ABC: $\frac{\sin(\theta^{\circ} + \phi^{\circ})}{2x} = \frac{\sin BCD}{12} \Rightarrow \frac{\sin(\theta^{\circ} + \phi^{\circ})}{x} = \frac{\sin BCD}{6}$ Achieves the correct expression for $\sin(\theta^{\circ} + \phi^{\circ}) = \frac{x \sin BCD}{6}$			
	A1	Achieves the correct expression for $\sin(\theta^{\circ} + \phi^{\circ}) = \frac{x \sin BCD}{6}$			
	M1	Uses sine rule on triangle BDC : $\frac{\sin \phi^{\circ}}{x} = \frac{\sin BCD}{6} \Rightarrow \left(\sin \phi^{\circ} = \frac{x \sin BCD}{6}\right)$			
	A1	Shows that $\sin \phi^{\circ} = \sin (\theta^{\circ} + \phi^{\circ})$ with no errors			
	ALT 1 -	- Uses exact values for the trigonometric ratios and the expansion for $sin (A + B)$			
	M1	Finds $\cos\theta = \frac{7}{8} \Rightarrow \sin\theta = \frac{\sqrt{15}}{8}$ or $\cos\phi = \frac{1}{4} \Rightarrow \sin\phi = \frac{\sqrt{15}}{4}$			
		Accept $\theta = 28.95^{\circ}$ or $\phi = 75.52^{\circ} \Rightarrow \sin \phi = 0.968$			
	A1	Finds $\cos\theta = \frac{7}{8} \Rightarrow \sin\theta = \frac{\sqrt{15}}{8}$ and $\cos\phi = \frac{1}{4} \Rightarrow \sin\phi = \frac{\sqrt{15}}{4}$			
		Accept $\theta = 28.95^{\circ}$ and $\phi = 75.52^{\circ} \Rightarrow \sin \phi = 0.968$			
	M1	Expands $\sin\left(\theta + \phi\right) = \frac{\sqrt{15}}{8} \times \frac{1}{4} + \frac{\sqrt{15}}{4} \times \frac{7}{8} = \left(\frac{\sqrt{15}}{4}\right)$			
		Or $\sin(\theta + \phi)^{\circ} = \sin(28.95^{\circ})\cos(75.52^{\circ}) + \sin(75.52^{\circ})\cos(28.95^{\circ}) = 0.968 = \sin\phi^{\circ}$			
	A1	Shows that $\sin(\theta + \phi) = \frac{\sqrt{15}}{4}$ and $\sin \phi = \frac{\sqrt{15}}{4}$ so $\sin(\theta + \phi) = \sin \phi$ with no errors.			
		If they use approximate values for sin θ and ϕ withhold this final mark so A0			
	ALT 2 -	- Uses $\angle BCD = 52.2^{\circ}$			
M1 Finds $\angle BCD = 52.2^{\circ}$ using cosine rule and applies sine rule on triangle AE $\frac{\sin(\theta^{\circ} + \phi^{\circ})}{6\sqrt{6}} = \frac{\sin 52.2^{\circ}}{12}$					
	Al	$\frac{6\sqrt{6}}{12}$ Shows that $\sin(\theta^\circ + \phi^\circ) = 0.968$			
	M1	Uses sine rule on triangle <i>BD</i> : $\frac{\sin \phi^{\circ}}{3\sqrt{6}} = \frac{\sin 52.2^{\circ}}{6} \Rightarrow \sin \phi^{\circ} = 0.968 = \sin(\theta^{\circ} + \phi^{\circ})$			
	A1	If they use an approximate value for angle <i>BCD</i> withhold this final mark so A0			
(d)	M1	For writing $\sin \phi^{\circ} = \sin (180 - \phi)^{\circ} \Rightarrow \theta^{\circ} + \phi^{\circ} = 180^{\circ} - \phi^{\circ}$			
	A1	For rearranging $\theta^{\circ} + \phi^{\circ} = 180^{\circ} - \phi^{\circ}$ to achieve $\therefore \theta = 180 - 2\phi$ This is a show question and there must be no errors here.			

Question Number	Scheme	Marks
10(a)	Circumference of base = $2\pi r$	B1
	$l\theta = 2\pi r \Rightarrow \theta = \frac{2\pi r}{l}$ $A = \frac{1}{2}l^{2}\theta = \frac{1}{2}l^{2}\frac{2\pi r}{l} = \pi rl$	B1
		M1A1 (4)
(b)	$A = \pi r l$	
	$l = r\sqrt{10} \Longrightarrow A = \pi r^2 \sqrt{10}$	B1
	$A = \pi r l$ $l = r\sqrt{10} \Rightarrow A = \pi r^2 \sqrt{10}$ $\frac{dA}{dr} = 2\pi r \sqrt{10} \Rightarrow k = 2\sqrt{10}$ $\frac{dV}{dr} = r r (r + 1)$	M1A1 (3)
(c)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1.5 \left(\mathrm{cm}^3/\mathrm{s}\right)$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	M1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \times 3r = \pi r^3$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 3\pi r^2$	B1ft
	$\therefore \frac{dA}{dt} = 2\pi \times 8\sqrt{10} \times 1.5 \times \frac{1}{3 \times 64\pi} = 0.3952 = 0.395 \text{ cm}^2/\text{s}$	A1 (5)

Part	Mark	No	otes
(a)	B1	For the circ of the base $L = 2\pi r$	
	B1	$R = l$ and $l = r\theta$	R = l
		Therefore $l\theta = 2\pi r \Longrightarrow \theta = \frac{2\pi r}{l}$	
	M1	$A = \frac{1}{2}l^2\theta$ and substituting their expression	Uses the formula $A = \frac{1}{2}RL$
		for θ to give $A = \frac{1}{2}l^2\theta = \frac{1}{2}l^2\frac{2\pi r}{l}$	$A = \frac{1}{2} \times l \times 2\pi r \Longrightarrow (A = \pi r l)$
	A1	For the required expression for A, $A = \pi r l$ w	vith no errors.


	1			
(b)	B1	For finding that the slant height is $\sqrt{10}$ times the radius of the cone		
		$h = 3$ $l = \sqrt{9+1} = \sqrt{10}$		
		r = 1		
		So $l = r\sqrt{10}$		
	M1	Substitutes $l = r\sqrt{10}$ into the given expression $A = \pi r l$ and differentiates their resulting		
		expression to find $\frac{dA}{dr}$		
		$A = \pi r^2 \sqrt{10} \text{ so } \frac{dA}{dr} = 2\pi r \sqrt{10}$ Therefore $k = 2\sqrt{10}$		
	Al	Therefore $k = 2\sqrt{10}$		
(c)	B1	States $\frac{dV}{dt} = 1.5 \text{ (cm}^3/\text{s)}$ Award if it seen explicitly in (b) and used in (c)		
	M1	States (or uses) a correct chain rule $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$		
	B1	For finding the volume of a cone in terms of <i>r</i> only		
		$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \times 3r = \pi r^3$		
	B1ft	Differentiates their expression for the volume of a cone provided it is in terms of V and r		
		only. $\frac{\mathrm{d}V}{\mathrm{d}r} = 3\pi r^2$		
	A1	For combining all required terms into their chain rule and evaluating to 3 significant		
		figures,		
		$\frac{dA}{dt} = 2\pi \times 8\sqrt{10} \times 1.5 \times \frac{1}{3 \times 64\pi} = 0.3952 = 0.395 \text{ cm}^2/\text{s}$		
	ALT – i	n terms of h		
	B1	States $\frac{dV}{dt} = 1.5 \text{ (cm}^3/\text{s)}$ Award if it seen explicitly in (b) and used in (c)		
	M1	States (or uses) a correct chain rule $\frac{dA}{dt} = \frac{dA}{dh} \times \frac{dh}{dt}$ and $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$		
		dl dh dl dh dl For finding the area and volume of a cone in terms of h		
	B1	$r = \frac{h}{3}, A = \pi r^2 \sqrt{10} \Rightarrow A = \frac{\sqrt{10}}{9} \pi h^2 \text{ and } V = \frac{1}{3} \pi r^2 h \Rightarrow V = \frac{1}{27} \pi h^3$		
	B1ft	Differentiates their expressions for the area and volume of a cone provided they are both in		
		terms of <i>h</i> only. $\frac{dA}{dh} = \frac{2\sqrt{10}}{9}\pi h$ and $\frac{dV}{dh} = \frac{3}{27}\pi h^2$		
	Al	$\frac{dh}{dh} \frac{9}{dh} \frac{27}{dh}$ Combines the required terms into their chain rules and evaluating to 3 significant figures		
		$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.395 \ 102$		
		dt dt		

Question Number	Scheme	Marks
11(a)	(i) $\overrightarrow{AC} = -\mathbf{a} + \frac{1}{4}\mathbf{b}$	B1
	(ii) $\overrightarrow{OD} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC} = \mathbf{a} + \frac{1}{2}\left(-\mathbf{a} + \frac{1}{4}\mathbf{b}\right) = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b}$ (iii) $\overrightarrow{BD} = \overrightarrow{BO} + \overrightarrow{OD} = -\mathbf{b} + \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b} = \frac{1}{2}\mathbf{a} - \frac{7}{8}\mathbf{b}$	M1A1 M1A1 (5)
(b)	$\overrightarrow{BE} = k\overrightarrow{BD} = k\left(\frac{1}{2}\mathbf{a} - \frac{7}{8}\mathbf{b}\right)$	M1
	$\overrightarrow{BE} = -\mathbf{b} + \overrightarrow{OE} = -\mathbf{b} + \lambda \mathbf{a}$	M1
	$\frac{7}{8}k = 1 \Longrightarrow k = \frac{8}{7}$	M1
	$\frac{k}{2} = \lambda \Longrightarrow \lambda = \frac{4}{7}$	A1 (4)
(c)	$\Delta OAC = \frac{1}{4} \Delta OAB$	M1
	$\Delta OEB = "\frac{4}{7}" \Delta OAB$	A1 ft
	$\frac{\Delta OAC}{\Delta OEB} = \frac{1}{4} \times \frac{7}{4} = \frac{7}{16}$	M1
	$\mu = \frac{7}{16}$	A1 (4)
		[13]

Part	Mark	Notes
(a)(i)	B1	For the correct vector $\overrightarrow{AC} = -\mathbf{a} + \frac{1}{4}\mathbf{b}$
(ii)	M1	For the correct vector statement $\overrightarrow{OD} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC}$ or $\overrightarrow{OD} = \overrightarrow{OC} + \frac{1}{2}\overrightarrow{CA}$
	A1	For the correct simplified vector $\overrightarrow{OD} = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b}$
(iii)	M1	For the correct vector statement $\overrightarrow{BD} = \overrightarrow{BO} + \overrightarrow{OD}$ or $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$
	A1	For the correct simplified vector $\overrightarrow{BD} = \frac{1}{2}\mathbf{a} - \frac{7}{8}\mathbf{b}$

In parts (b) and (c) you must follow through the vectors they have found in part (a)			
(b)	M1	States or implies two paths that will lead to a solution.	
		For example: using triangle OEB	
		• $\overrightarrow{BE} = k \overrightarrow{BD}$ and $\overrightarrow{BE} = \overrightarrow{BO} + \overrightarrow{OE}$	
		or using triangle OED	
		• $\overrightarrow{OE} = \lambda \mathbf{a}$ and $\overrightarrow{OE} = \overrightarrow{OD} + \overrightarrow{DE}$	
		This is a B mark in Epen	
	M1	For writing their paths as vectors in terms of a , b λ and another constant (e.g. k or μ)	
		For example: using triangle <i>OEB</i>	
		• $\overrightarrow{BE} = k \overrightarrow{BD} = k \left(\frac{1}{2} \mathbf{a} - \frac{7}{8} \mathbf{b} \right)$ and $\overrightarrow{BE} = -\mathbf{b} + \lambda \mathbf{a}$	
		or using triangle OED	
		• $\overrightarrow{OE} = \lambda \mathbf{a} \text{ and } \overrightarrow{OE} = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b} + k\left(-\mathbf{b} + \lambda \mathbf{a}\right) \text{ OR } \overrightarrow{OE} = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b} + k\left(\frac{1}{2}\mathbf{a} - \frac{7}{8}\mathbf{b}\right)$	
	dM1	Equates coefficients of their two expressions and attempts to find the value of λ :	
		In triangle <i>OEB</i>	
		• $k\frac{1}{2}\mathbf{a} - k\frac{7}{8}\mathbf{b} = \lambda \mathbf{a} - \mathbf{b}$ $\Rightarrow k\frac{7}{8} = 1 \Rightarrow k = \frac{8}{7} \text{ and } \frac{k}{2} = \lambda \Rightarrow \lambda = \dots$	
		or in triangle <i>OED</i> , there are two possible expressions for \overrightarrow{DE}	
		• $\lambda \mathbf{a} = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b} + k(-\mathbf{b} + \lambda \mathbf{a}) \qquad \Rightarrow k = \frac{1}{8} \text{ and } \lambda = \frac{1}{2} + \frac{1}{8}\lambda \Rightarrow \lambda = \dots$	
		Or $\lambda \mathbf{a} = \frac{1}{2}\mathbf{a} + \frac{1}{8}\mathbf{b} + k\left(\frac{1}{2}\mathbf{a} - \frac{7}{8}\mathbf{b}\right) \implies \frac{7}{8}k = \frac{1}{8} \implies k = \frac{1}{7} \text{ and } \lambda = \frac{1}{2} + \frac{1}{7}k \implies \lambda$	
	Al	For the correct value of λ	
		$\lambda = \frac{4}{7}$	
(c)	M1	For stating that $\triangle OAC = \frac{1}{4} \triangle OAB$ or $4 \triangle OAC = \triangle OAB$ 1	
	M1	For stating $\triangle OEB = "\lambda" \triangle OAB \Rightarrow \triangle OEB = "\frac{4}{7}" \triangle OAB$ 2	
		This is an A mark in Epen	
	M1	For dividing 1 by 2 = $\frac{\Delta OAC}{\Delta OEB} = \frac{1}{4} \times "\frac{7}{4}" =$	
	A1	For $\mu = \frac{7}{16}$	

USEFUL SKETCH

B