Please check the examination details below before entering your candidate information				
Candidate surname			Other name	s
Pearson Edexcel International GCSE	Centre	Number		Candidate Number
Tuesday 21 May 2019				
Morning (Time: 1 hour 30 minut	tes)	Paper Re	eference 4	MB1/01R
Mathematics B Paper 1R				
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.				

Instructions

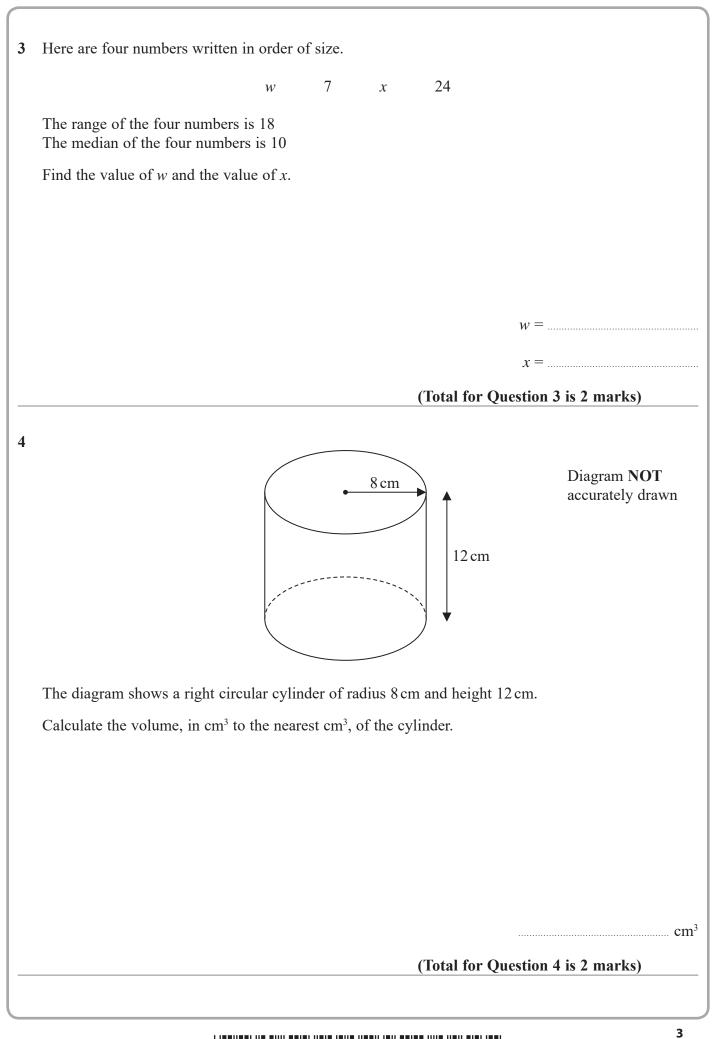
- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.


Turn over 🕨

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	Answer ALL TWENTY NINE questions.					
	Write your answers in the spaces provided.					
	You must write down all the stages in your working.					
1	and the Lowest Common Multiple (LCM) of 60 and 135 how your working clearly.					
	(Total for Question 1 is 2 marks)					
2	The <i>n</i> th term of a sequence is given by $9n - 7$					
	Determine whether 214 is a term of this sequence. Show your working clearly.					
	(Total for Question 2 is 2 marks)					
	2					

DO NOT WRITE IN THIS AREA

P 6 0 1 9 2 A 0 4 2 4

DO NOT WRITE IN THIS AREA

8

A x O x D 132° D

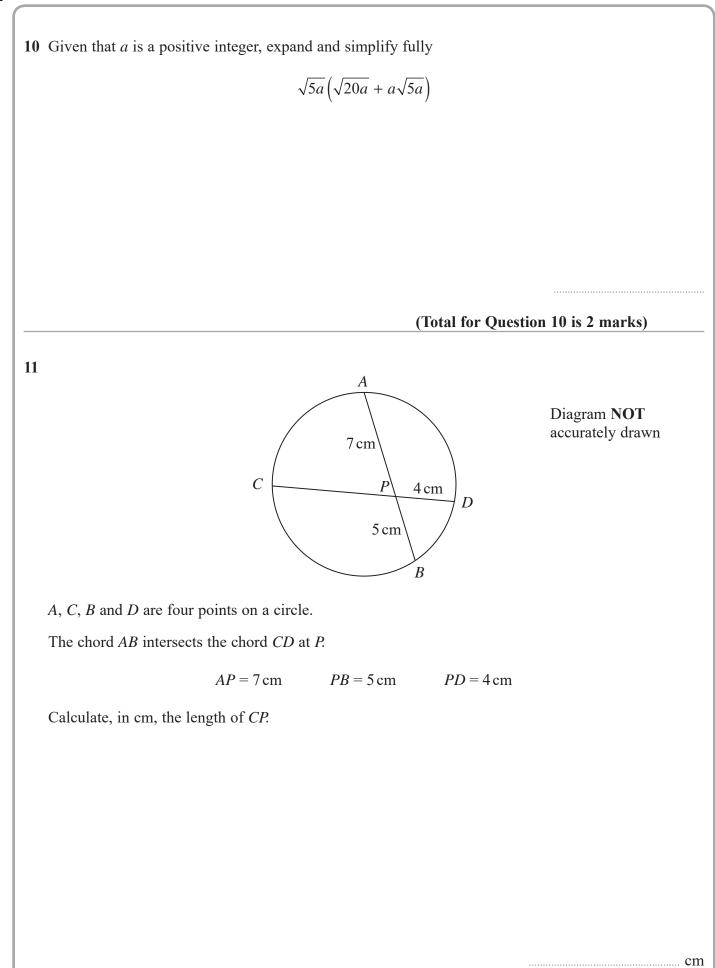
Diagram **NOT** accurately drawn

В

С

A, B, C and D are points on a circle, centre O.

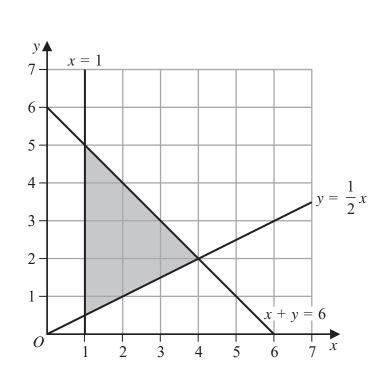
Angle $ADC = 132^{\circ}$


Calculate, in degrees, the size of angle *x*.

P 6 0 1 9 2 A 0 5 2 4

0

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS ARE

P 6 0 1 9 2 A 0 6 2 4

DO NOT WRITE IN THIS AREA

(Total for Question 11 is 2 marks)

Write down the three inequalities that define the shaded region in the diagram above.

13 A motorbike was bought for £8600The motorbike depreciated in value by 20% in the first year after it was bought and by 15% in each of the following years.

Find the value of the motorbike exactly 3 years after it was bought.

(Total for Question 1.	3 is	3	marks)
------------------------	------	---	--------

£

(Total for Question 12 is 3 marks)

12

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE/

DO NOT WRITE IN THIS AREA

 $\mathbf{A} = \begin{pmatrix} 4 & 3 \\ 2 & -1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 4 & x \\ 2y & 7 \end{pmatrix}$

Given that $5\mathbf{A} + n\mathbf{B} = \begin{pmatrix} 8 & 27 \\ 1 & -26 \end{pmatrix}$ where *n* is an integer,

14

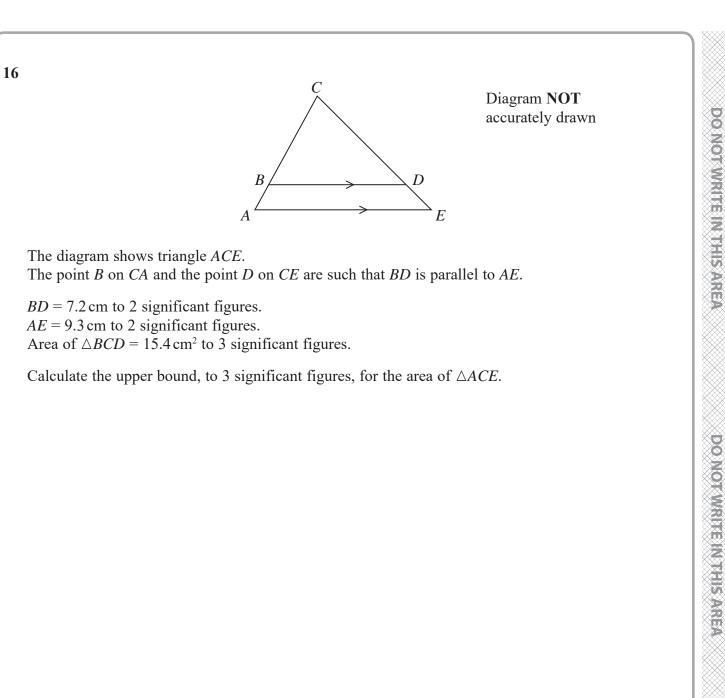
find the value of *n*, the value of *x* and the value of *y*.

(Total for Question 14 is 3 marks)

15 (a) $x \times 10^5 + y \times 10^3 = k \times 10^5$

Express k in terms of x and y. Give your answer in its simplest form.

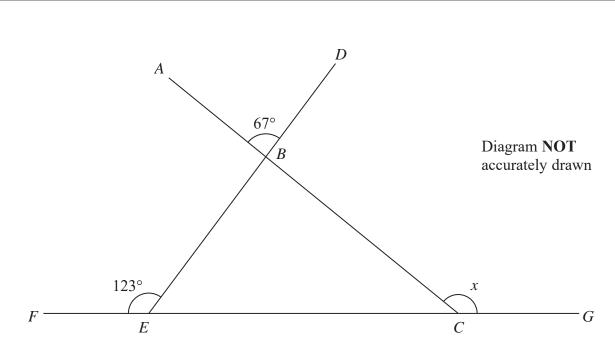
(b) Calculate $(8.5 \times 10^{64}) \times (4 \times 10^{68})$ Give your answer in standard form.


(2)

k =

(2)

(Total for Question 15 is 4 marks)



...... cm²

(Total for Question 16 is 3 marks)

The diagram shows three straight lines ABC, DBE and FECG.

 $\angle ABD = 67^{\circ}$ and $\angle BEF = 123^{\circ}$

Calculate the size, in degrees, of angle *x*. Give a reason for each stage of your working.

(Total for Question 17 is 4 marks)

0

18 Martin, Jonas and Suzy are three art students. DO NOT WRITE IN THIS ARE Jonas has three times as many crayons as Martin. Suzy has 7 fewer crayons than Jonas. These three students have a total of 56 crayons. (a) Use all this information to write down an equation in *x*. (2) (b) Find the number of crayons Suzy has. **DO NOT WRITE IN THIS AREA** (2) (Total for Question 18 is 4 marks) 19 The sum of the interior angles of a regular polygon is 2700° Calculate the size, in degrees to one decimal place, of each interior angle of the DO NOT WRITE IN THIS ARE 0 (Total for Question 19 is 3 marks) P 6 0 1 9 2 A 0 1 2 2

regular polygon.

Martin has *x* crayons.

20

DO NOT WRITE IN THIS AREA

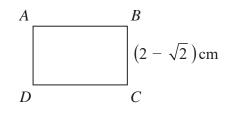


Diagram **NOT** accurately drawn

The diagram shows rectangle ABCD.

$$AD = BC = \left(2 - \sqrt{2}\right) \mathrm{cm}$$

Area of $ABCD = 3(5\sqrt{2} - 2)$ cm²

Show that the length of AB can be written in the form $(a + b\sqrt{2})$ cm where a and b are integers to be found.

Show your working clearly.

(Total for Question 20 is 3 marks)

DO NOT WRITE IN THIS AREA

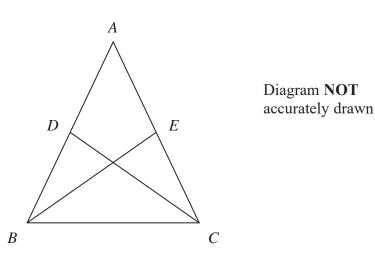
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

21 Solve the simultaneous equations

$$3x + 4y = 4.5$$
$$2x - 3y = 11.5$$

Show clear algebraic working.


x =

y =

(Total for Question 21 is 4 marks)

22

DO NOT WRITE IN THIS AREA

ABC is an isosceles triangle with AB = AC. *D* and *E* are the midpoints of the sides *AB* and *AC* respectively.

Prove that triangles *EBC* and *DCB* are congruent.

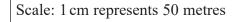
(Total for Question 22 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

23 Given that $\frac{27^{3x}}{9^y} = 3^{2x} \times 3^{x+1}$

find an expression for y in terms of x. Give your answer in its simplest form.


y =

(Total for Question 23 is 4 marks)

24 The scale drawing shows the positions of two posts, *A* and *B*.

N

A third post, *C*, is equidistant from *A* and *B*.

(a) Using ruler and compasses only, construct the locus of points that are equidistant from *A* and *B*.

Given that C is also on a bearing of 250° from B,

- (b) find and mark the position of C on the scale drawing with a cross (\times). Label the cross C.
- (c) Find by measurement from the scale drawing, the distance, in metres to the nearest metre, of *C* from *A*.

Ν

В

..... m

(2)

(2)

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

25 The line L_1 has equation 5x + 4y = 16

The line L_2 is parallel to L_1 and passes through the point with coordinates (8, 15) L_2 crosses the *x*-axis at the point *A* and the *y*-axis at the point *B*.

Calculate the length, to the nearest whole number, of *AB*.

(Total for Question 25 is 5 marks)

DO NOT WRITE IN THIS AREA

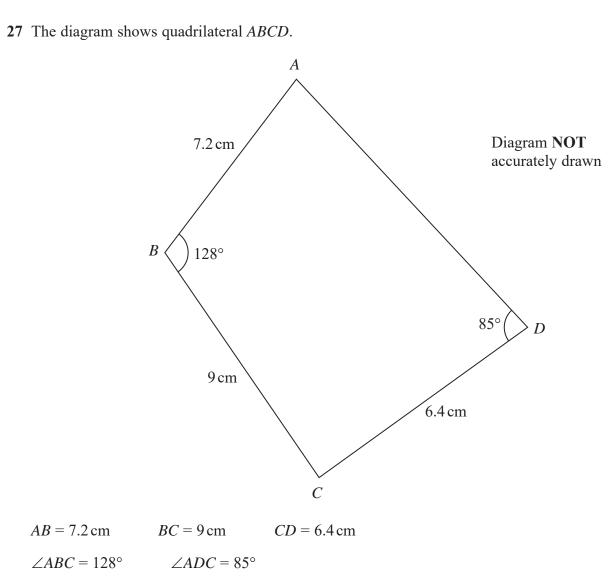
26 (a) Use the factor theorem to show that (2x - 1) is a factor of $6x^3 + 23x^2 - 5x - 4$

(b) Hence, solve
$$\frac{6x^3 + 23x^2 - 5x - 4}{2x - 1} = 0$$

Show clear algebraic working.

(4)

(2)


(Total for Question 26 is 6 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE/

DO NOT WRITE IN THIS ARE.

Calculate the area, in cm^2 to 3 significant figures, of quadrilateral *ABCD*.

(Total for Question 27 is 6 marks)

21

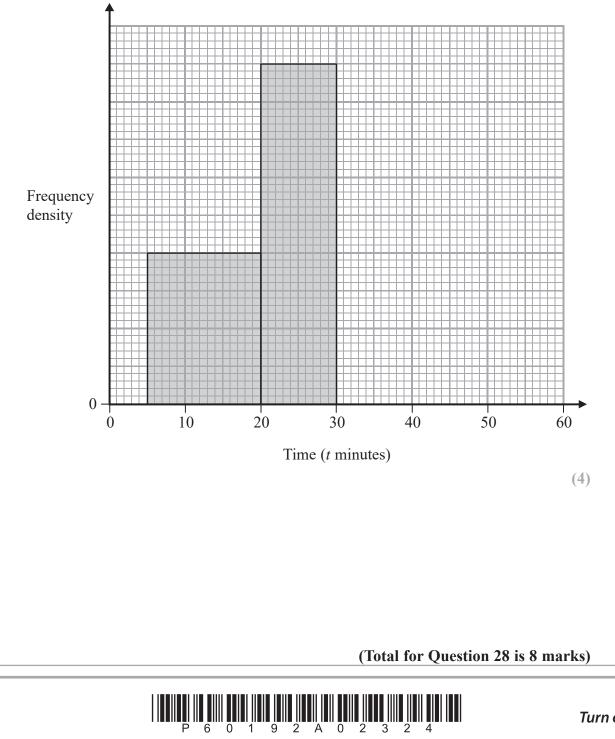
 cm^2

DO NOT WRITE IN THIS AREA

28 The table below gives information about the lengths of time, in minutes, that 75 cars were parked in a car park on Sunday.

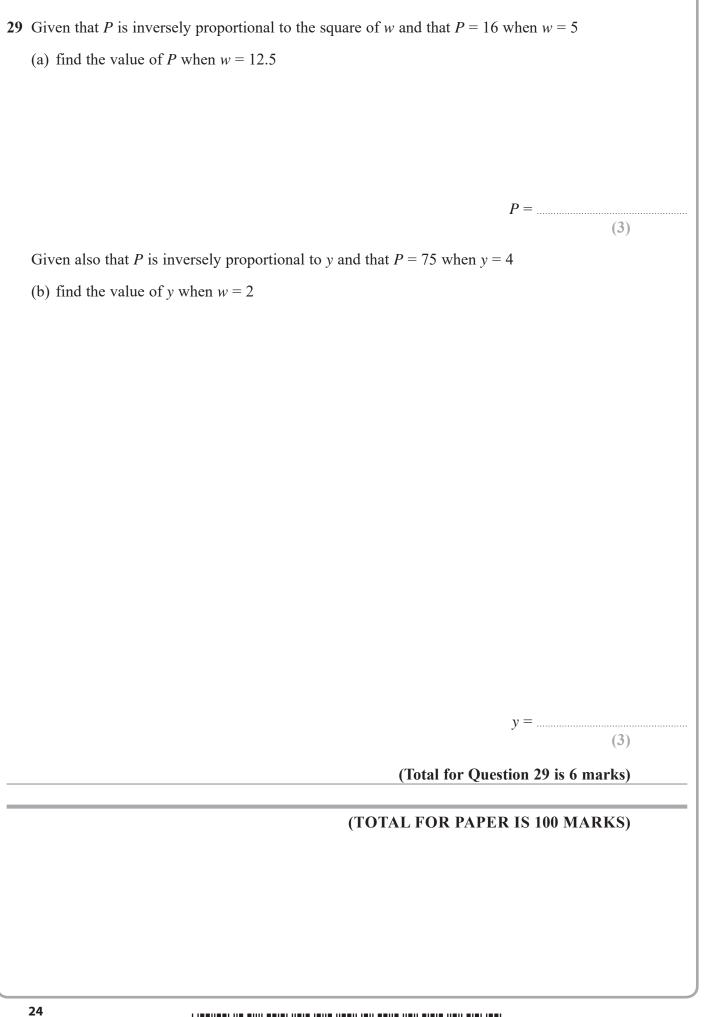
Time (<i>t</i> minutes)	Frequency			
$0 < t \leq 5$	8			
$5 < t \leqslant 20$	10			
$20 < t \leqslant 30$	15			
$30 < t \leqslant 40$	17			
$40 < t \leqslant 60$	25			

(a) Calculate an estimate for the mean length of time, in minutes to one decimal place, that the 75 cars were parked in the car park on Sunday.


...... minutes (4)

The incomplete table and incomplete histogram give information about the lengths of time, in minutes, that 132 cars were parked in the car park on Monday.

Time (<i>t</i> minutes)	Frequency
$0 < t \leqslant 5$	12
$5 < t \leq 20$	
$20 < t \leqslant 30$	
$30 < t \leqslant 40$	27
$40 < t \leqslant 60$	18


(b) Complete the histogram and the table.

23

DO NOT WRITE IN THIS

DO NOT WRITE IN THIS ARE

