Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3300U60-1

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

THURSDAY, 7 JUNE 2018 – MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.

Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

In question **3**, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	4	
2.	3	
3.	6	
4.	4	
5.	3	
6.	5	
7.	6	
8.	5	
9.	6	
10.	2	
11.	3	
12.	4	
13.	3	
14.	2	
15.	4	
16.	4	
17.	5	
18.	4	
19.	7	
Total	80	

per annum as a decimal and *n* is the number of compounding periods per annum.

(a)	Calculate – (1	<u>145·3</u> 2·4 – 9·8) ³ , giving	g your answer cor	rect to 3 signific	cant figures.	[2]	Examin only
(b)	Calculate th	e reciprocal of 47	, giving your ansv	ver correct to 4	decimal places.	[2]	
Circl (a)	e the correct a Which of the	answer in each of e following values	the following. cannot be an ex	ternal angle of a	a regular polygon?	[1]	
	10°	18°	30°	48°	72°		
(b)	An arrow on It is turned o In which dire	a spinner is facir lockwise through ection will the arro	ng north. an angle of 1530 ow now be facing)°. ?		[1]	
N	lorth	East	South	West	None of these		
(C)	Point A is or What is the	n a bearing of 100 bearing of point <i>E</i>)° from point <i>B</i> . 3 from point <i>A</i> ?			[1]	
				1000	200		

acc	uracy in writing.
A so	plution of the equation
	$x^3 - 7x - 51 = 0$
lies	between 4 and 5.
Use You	the method of trial and improvement to find this solution correct to 1 decimal place. must show all your working. [4 + 2 OCW]

3300U601 05

4.	(a)	The highest common factor (HCF) of 30 and 75 is the square root of a number. What is the number?	[2]	Examiner only
	(b)	The cube root of 32.768 is $33\frac{1}{3}$ % of a number. What is the number?	[2]	
	·····			3300U601

(C)	Explain clearly why the following statement cannot be true.	[2]	Examiner only
	'The length of <i>CD</i> is 3.9 cm and the length of <i>RS</i> is 6.5 cm'.		
.			
·····			
			33 00 U 60 1 09

	12 cm	
	(2x-y) cm	
	Diagram not drawn to scale	
KLMN is a kite where <i>k</i>	$L = 3x \operatorname{cm} \operatorname{and} LM = y \operatorname{cm}.$	
	К	
	\wedge	
	3 <i>x</i> cm	
	y cm	
	M M	
	Diagram not drawn to scale	
The perimeter of the kit	e <i>KLMN</i> = 33 cm.	
Calculate the values of	x and y.	
You must show all your	working.	[5]
	iprovement method.	[5]

3300U601 11

	Examiner only
	0 U 6 0 1
	330
	3300U601
]

(b) Hence find the length of DE.	[3]	C

Calculate the volume of a pyramid with a base area of 13200 cm ² and a perpendicular height of	F
460 cm. Give your answer in m ³ . [3]	
Diagram not drawn to scale	

	, <i>a</i> - <i>b</i> ,		
Use the formula	$d = \frac{d}{c}$ to calculate the le	east value of d.	
You must show a	l your working.		[3]
			••••••
••••••			••••••

Express the following as	a single fraction in its simplest form.	[4]
	2 7	
	$\overline{3x-5} - \overline{11x-13}$	

16.	A bag contains 200 beads. Some of the beads are red. A bead is selected at random. Its colour is recorded and then the bead is replaced . A second bead is selected at random and its colour is also recorded.	Examine only
	The probability that two red beads are selected is 0.1369.[4]Calculate the number of red beads in the bag.[4]	

Solve the Give you	e equation $(2x + 5)(3x - 11) = 7$. ur answers correct to 2 decimal places.	[5]	C
••••••			
·····			

Vake <i>c</i> the subject of the following formula.	[4]	
$\sqrt{ac^2 - v} = c$		
$\sqrt{gc} = v - c$		
		Γ

(b) Calculate the size of \widehat{CED} .	[4]
END OF PAPER	

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1
		•

