Surname	Centre Number	Candidate Number
Other Names		0

GCSE – NEW

3410UA0-1

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

HIGHER TIER

WEDNESDAY, 13 JUNE 2018 - MORNING

1 hour 45 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	9				
3.	5				
4.	9				
5.	11				
6.	6				
7.	10				
8.	10				
9.	8				
10.	6				
Total	80				

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

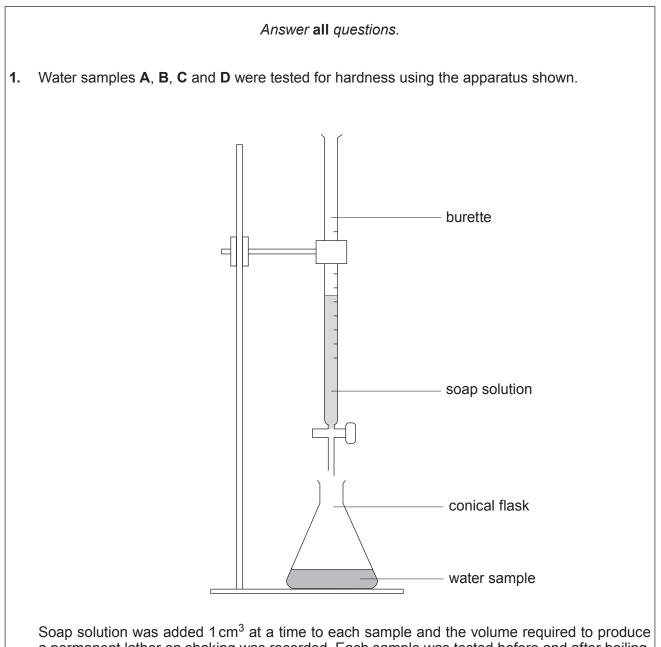
Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

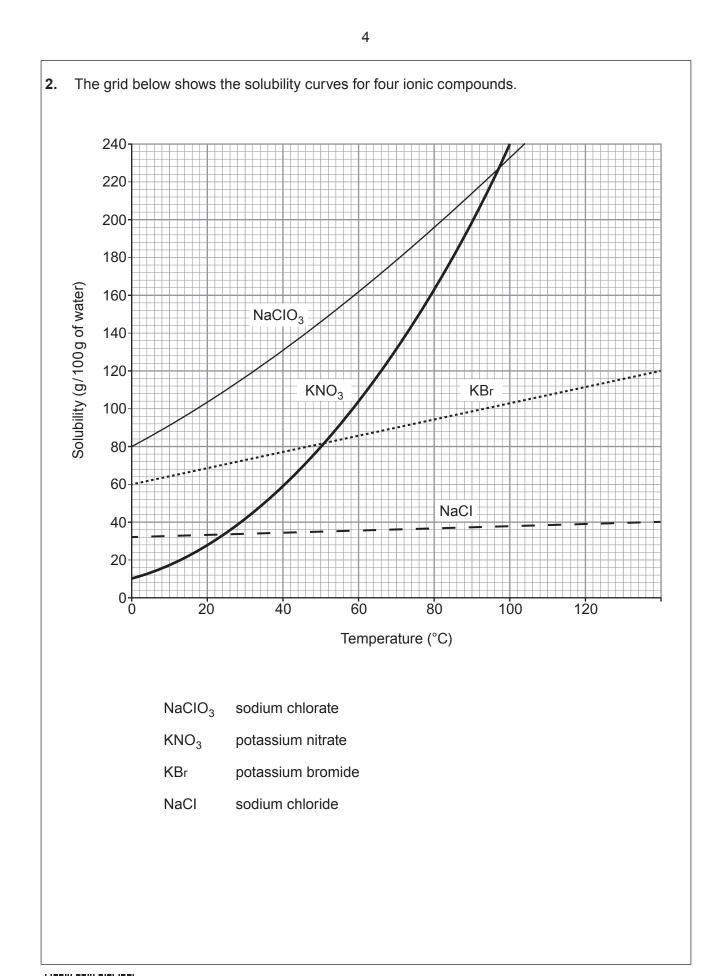
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

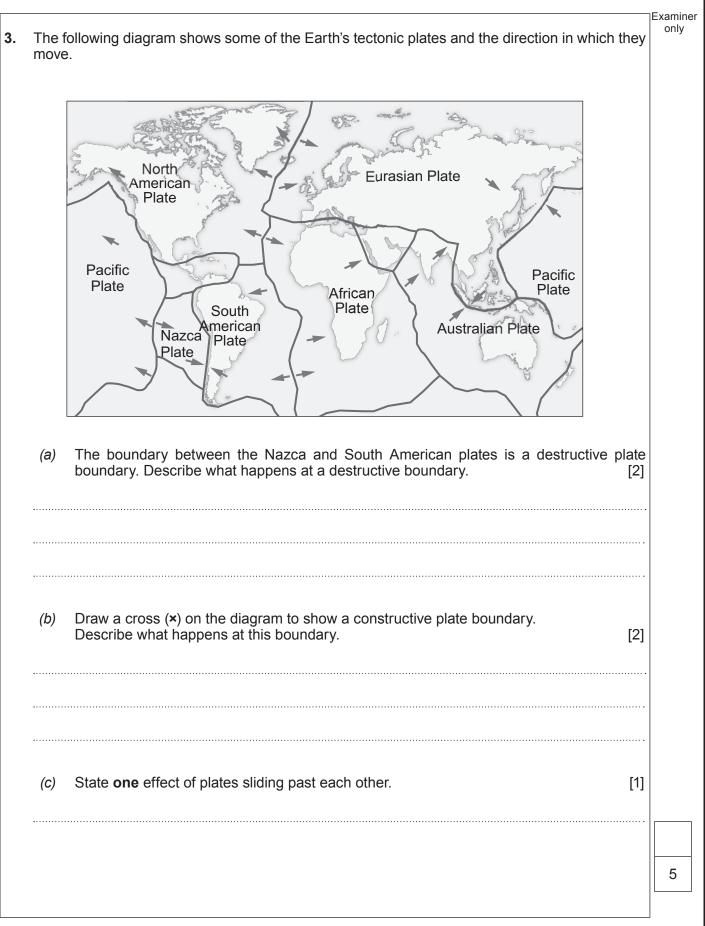
Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.


Soap solution was added 1 cm³ at a time to each sample and the volume required to produce a permanent lather on shaking was recorded. Each sample was tested before and after boiling. The results are shown in the table.

Water comple	Volume of soap solution required (cm ³)				
Water sample	Before boiling	After boiling			
Α	1	1			
В	10	10			
С	15	1			
D	15	8			

(a)	(i)	State which water sample contains only temporary hardness. Explain you answer. [2] Water sample	
	(ii)	Give one similarity in the composition of temporary and permanent hard water. [1]
(b)	Disc	uss the benefits and drawbacks of living in a hard water area. [3	 8]
			6
03		© WJEC CBAC Ltd. (3410UA0-1) Turn ove	 r.



			Examiner only
(a) (i)	Give the temperature at which the solubility of potassium nitrate and potassium bromide is the same. [1]	Unity
		°C	
	(ii)	Calculate the mass of solid potassium nitrate that would form if a saturated solution in 200g of water were cooled from 100 °C to 20 °C. [3]	
		Mass = g	
	(iii)	Suggest why a student may be surprised at the temperature range shown on the solubility curves. [1]	
			5
(b) (i)	Give the symbols of the ions of Group 1 elements present in the compounds shown on the grid.	3410UA01
	(ii) 	Explain how these ions are formed from their atoms. [2]	
(-			
(C)		assium nitrate reacts with aluminium hydroxide to produce aluminium nitrate and assium hydroxide.	
	Bal	ance the symbol equation for the reaction taking place. [1]	
		$KNO_3 + AI(OH)_3 \longrightarrow AI(NO_3)_3 + KOH$	
			9

BLANK PAGE

7

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

				Examine
4.	(a)	Dilute equa	e hydrochloric acid reacts with sodium thiosulfate to make the products shown ir ition.	n the
		?	(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + SO ₂ (g) + S(s) + H ₂ O(l)	
		(i)	Use the equation to work out the formula of sodium thiosulfate.	[1]
			Formula	
		(ii)	The symbol (aq) in the equation tells us that the substances are aqueous. What is meant by this?	[1]
		(iii)	The rate of this reaction can be studied as shown in the diagram.	
	sodiur		and start stopwatch sulfate sulfate Use information from the equation to explain why the cross disappears.	[2]
	80		© WJEC CBAC Ltd. (3410UA0-1)	

Examiner only

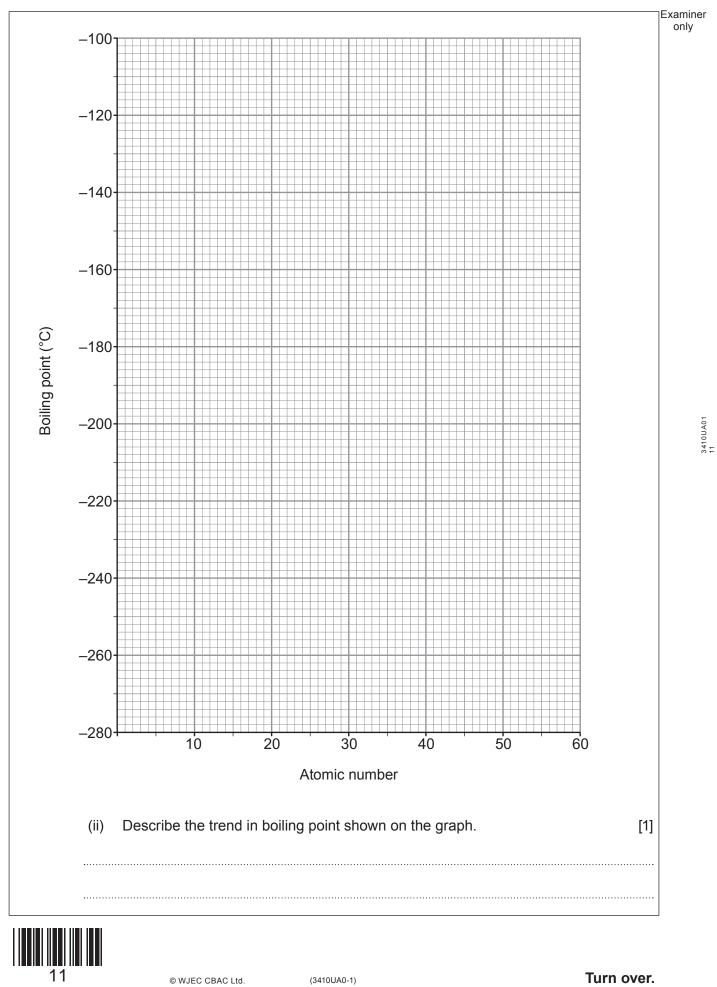
[2]

3410UA01 09

(b) A student studied the effect of temperature on the rate of this reaction. He obtained the following results.

Temperature	Ti	me taken for cro	ss to disappear ((S)
(°C)	1	2	3	Mean
15	130	128	129	129
30	53	53	53	53
45	21	29	23	24.3
60	7	7	6	6.7

(i) Another student said that one of the mean values was incorrect. Identify the incorrect mean. Give your reasoning.


- (ii) State what conclusion can be drawn about the effect of temperature on the rate of this reaction. Explain your conclusion using particle theory. [3]

						_
						_
						_
B the	element with element in Gr element that s	roup 2 and Pe shows both m	eriod 4 etallic and nor		-	[3] s.
, °	helium	neon	argon	krypton	xenon]
Inert gas	2	10	18	36	54	_
Inert gas Atomic number	-		-186	-153	-108	-
	-269	-246	100			

© WJEC CBAC Ltd.

Inert gas	helium	neon	argon	krypton	xenon	
Boiling point (°C)	-269	-246	-186	-153	-108	
Boiling point (K)	4	27		120	165]
Use the informa	ation in the tak	ole to calculat	te the boiling	point of argon	in K.	[2]
			E	3oiling point =		K
d) Give one use purpose.	of argon. Exp	lain in terms	of electronic	c structure wh	y it is used f	for this [2]

3410UA01 13

Limestone is an in quicklime and slat	nportant raw material. ked lime.	It can be used as a building i	material or converted into	
Describe and expl into slaked lime.	ain the sequence of rea	actions carried out in the labor	atory to convert limestone [6 QER]	
				6

Examiner

	Halogen	Observations	
	fluorine	explodes in cold and dark	
	chlorine	explodes in sunlight	
	bromine	small explosion when ignited with a flame	
(i)		edge of electronic structure to explain why all the h d why they react more slowly on going down the g	

(ii) Hydrogen fluoride is highly corrosive and can be used to etch glass which is mainly silicon dioxide.

Balance the symbol equation for the reaction between hydrogen fluoride and silicon dioxide. [1]

 $HF + SiO_2 \longrightarrow SiF_4 + H_2O$

(iii) Calcium fluoride reacts with sulfuric acid, H₂SO₄, to produce calcium sulfate and hydrogen fluoride. Give the **symbol** equation for the reaction. [3]

Examiner

(b)	Chlorine reacts with aluminium to produce aluminium chloride.							
	A sample of Calculate th	aluminium e simplest f	chloride of m formula of thi	ass 26.70 g	was found to f aluminium.	contain 5.45g	of aluminium.	
	You must s	how your w	orking.				[3]	
			$A_{\rm r}({\rm AI}) = 27$	A _r (Cl) =	= 35.5			
	Formula							
								10
15								
10		© WJEC CBAC L	_td. (3	3410UA0-1)			Turn over.	

(i)	$2NaCl \longrightarrow 2Na + Cl_2$
(i)	
	When carrying out the reaction 120 kg of sodium chloride was found to produce 38.05 kg of sodium.
	Calculate the maximum possible mass of sodium that could be produced and use this figure to calculate the percentage yield of this reaction. [4]
	$A_{\rm r}({\rm Na}) = 23$ $A_{\rm r}({\rm Cl}) = 35.5$
	Maximum possible mass =kg
	Percentage yield =%
(ii)	Suggest a reason why the yield is less than 100%. [1]
	Suggest why this reaction must be carried out under dry conditions. [1]
	 (ii) (iii)

Examiner only

(b) A sample of lithium is found to contain two isotopes.

Isotope Percentage present in sample (%)			
lithium-6	7.59		
lithium-7	92.41		

(i) Calculate the relative atomic mass (A_r) of lithium. Give your answer to three significant figures. [3]

 $A_r = \frac{\text{(isotope 1 mass × abundance) + (isotope 2 mass × abundance)}}{100}$

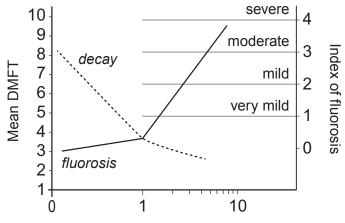
10

(ii)

	Metal	Temperature at which the carbonate decomposes (°C)	Temperature at which the nitrate decomposes (°C)	
	magnesium	117	89	
	calcium	178	561	
	strontium	235	570	
	barium	267	700	
a)	Describe the	trends in the stabilities of the Group	2 carbonates and nitrates.	[3]
	When a carbo	onate decomposes it produces carb	on dioxide αas. Describe an exp	eriment
′b)		onate decomposes it produces carb e carried out to show that carbo		
b)	that could be reaction. When calciun NO ₂ .		n dioxide gas is produced dur	ing the [2]

BLANK PAGE

10. Fluorine exists naturally as the fluoride ion. It is found in soil, water, foods and several minerals, such as fluorapatite and fluorite.

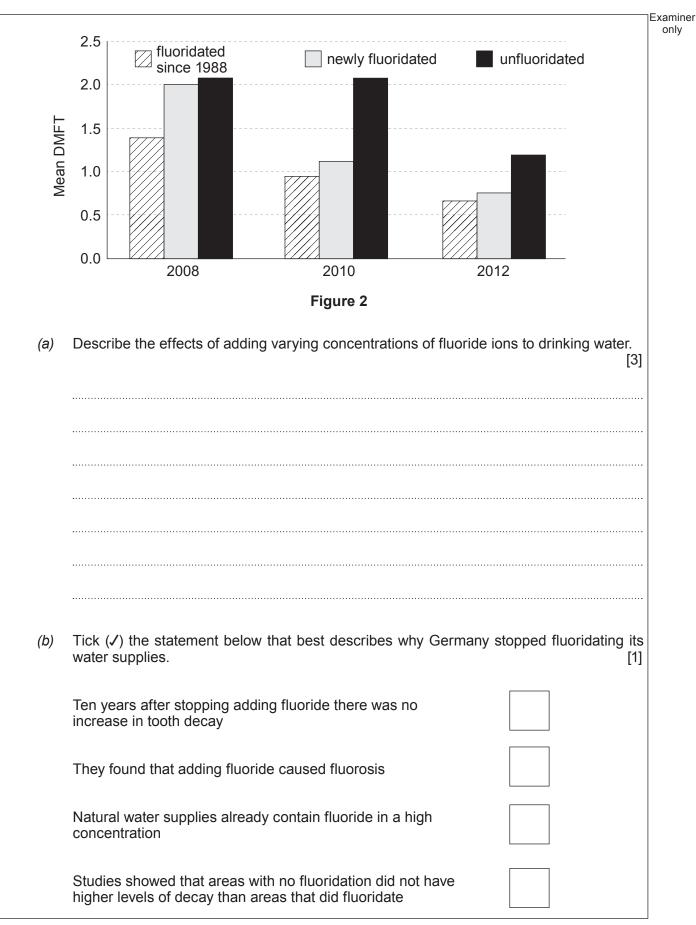

Fluoride ion concentration in seawater averages 1.3 ppm (parts per million). In fresh water, the natural range is typically between 0.01 and 0.3 ppm. In some parts of the world, fresh water contains fluoride ion levels which are dangerous and can lead to health problems.

In the early 1930s, scientists found that people who were brought up in areas with naturally fluoridated water had up to two-thirds fewer cavities compared to those who lived in areas where the water was not fluoridated. Several studies since then have repeatedly shown that when fluoride is added to people's drinking water in areas where natural levels are low, tooth decay decreases.

However, many European countries which do not fluoridate their water do not have a higher incidence of dental decay than countries which do so. It was also found that in Germany and Finland, decay rates either remained stable or continued in their downward trend after they stopped adding fluoride to their drinking water.

Figure 1 shows data about the effect of fluoridation of drinking water on the mean number of decayed, missing and filled teeth (DMFT) and the amount of fluorosis seen.

Figure 2 shows the change in mean DMFT in three regions of Australia over a four year period.



Fluoride ion content of drinking water (ppm)

Figure 1

		Examiner
(c)	Tick (<i>J</i>) the box which gives one definite conclusion that can be drawn using only the data in Figure 2 . [1]	only
	Fluoridation has no effect on levels of decay	
	People have reduced their intake of sugary foods over this period	
	More than one factor affects levels of decay	
	Fluoridation is the main cause of falling levels of decay	
(d)	'Mass medication' is an argument often given to oppose fluoridation of water supplies. Explain what is meant by the term <i>mass medication</i> . [1]	
	END OF PAPER	6

BLANK PAGE

BLANK PAGE

BLANK PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH_4^+	carbonate	CO ₃ ²⁻	
barium	Ba ²⁺	chloride	CI	
calcium	Ca ²⁺	fluoride	F	
copper(II)	Cu ²⁺	hydroxide	OH⁻	
hydrogen	H⁺	iodide	I_	
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻	
iron(III)	Fe ³⁺	oxide	0 ²⁻	
lithium	Li ⁺	sulfate	SO4 ²⁻	
magnesium	Mg ²⁺			
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag ⁺			
sodium	Na ⁺			
zinc	Zn ²⁺			

2	ο
4	0

				Ę	20	Ę		
	0	Heliun PHeliun	Neon 10					
	2		19 Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85	
	9		16 Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84	
	Ŋ			31 Phosphorus 15				
	4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82	
	ი		11 B 5	27 Al 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
IABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIO					59 Co Cobalt	103 Rhodium 45	192 Ir Iridium 77	
HE PERIODIC TABLE	dno.	en]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ę	Gro	Hydrogen			55 Mn Manganese 25	99 TC Technetium 43	186 Re Rhenium 75	
					52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						93 Niobium 41		
					48 Titanium 22	91 Zr Zirconium 40	179 Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La 57	227 AC Actinium 89
	2		9 Be Beryllium	24 Mg Magnesium	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Radium 88
			7 Li Lithium 3	23 Na Sodium	39 ★ ★ Potassium 19	86 Rb 37	133 Cs Caesium 55	223 Fr Francium 87
				L				

Ar Symbol Name atomic mass

