

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW) MATHEMATICS - COMPONENT 1 (HIGHER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
 1.* (a) (i) Valid comment e.g. 'The first line expresses an opinion' or 'It pushes you to give a low answer', or 'It tells you you should not be eating much chocolate' 	E1	Do not allow 'She only asks about one day.' Allow eg 'She says too much chocolate is bad for your health.'
(a)(ii) Appropriate criticism e.g. 'It is too vague' or 'How big is a piece?', 'Cannot answer no pieces.' 'Cannot answer more than 6'.	E1	Allow e.g. 'She is only asking about 1 particular day'.
(<i>b</i>) 'No' stated or implied with two valid reasons based on sample size, location, time or targeting teenagers e.g. '10 people is too few', 'People outside a supermarket are not likely to be teenagers'	E2	E1 for 'No' with only one valid reason Allow eg 'The people could all be different' or 'Monday morning limits the type of people she can ask.' or 'A lot of people may be at work on a Monday morning.'
	(4)	
2.* (a) $7x - 3x = 4 - 2$ or equivalent	B1	Seen or implied FT until 2nd error
$x = \frac{2}{4}$ or equivalent	B1	FT Mark final answer
(b) $3 - 2x + 18 = 5x$ or equivalent	B1	Seen or implied FT until 2nd error
$7x = 21 \text{ or } x = \frac{21}{7}$	B1	FT
<i>x</i> = 3	B1	FT
(c)(i) 3x > 6 or -6 > -3x	M1	
x > 2 or 2 < x	A1	No marks for use of "=", unless finally replaced to give $x > 2$ then award M1 A1.
		If M0 then SC1 for $x > \overline{3}$
(<i>c</i>)(ii) Open circle at 2 with arrow right	B1	STRICT FT 'their (<i>c</i>)(i)' provided an inequality Accept any unambiguous notation; arrow could just be a line but must not clearly terminate unless this follows through from part (c)(i); mark intent
	(8)	
3.* Arc (of circle) centre <i>C</i> radius 6 cm ± 2mm	B1	
Correct perpendicular bisector construction with appropriate arcs	B2	Tolerance \pm 2mm and \pm 2°
Correct area shaded or indicated	B1	Award B1 for appropriate arcs and no line or line outside of tolerance ie no arcs no marks FT provided a closed region bounded by an attempt at a perpendicular bisector, with or without arcs, and the arc of a circle centre <i>C</i>
	(4)	

Eduqas Summer 2017 GCSE (9-1) Mathematics	Mark	Comment
Component 1: Higher Tier	mark	
$\begin{array}{c} \mathbf{4.*}\\ \mathbf{(a)} \begin{pmatrix} -6\\ 20 \end{pmatrix} \end{array}$	B2	B1 for each element or
		for (3q =) $\begin{pmatrix} -12\\21 \end{pmatrix}$ or equivalent seen or for
		$\left(\frac{-6}{20}\right)$ or for $\frac{-6}{20}$ or for $\frac{-6}{20}$
(b) 6 - 4m = 10 or for $\begin{pmatrix} 6 \\ -1 \end{pmatrix} + \begin{pmatrix} 4 \\ -7 \end{pmatrix} = \begin{pmatrix} 10 \\ -8 \end{pmatrix}$ or	M1	
$\begin{pmatrix} 6\\-1 \end{pmatrix} - \begin{pmatrix} -4\\7 \end{pmatrix} = \begin{pmatrix} 10\\-8 \end{pmatrix}$		
<i>m</i> = -1	A1	
<u>n = -8</u>	B1 (5)	FT $-1 + 7m$ for 'their derived m'
5.*	(3)	
(<i>Riley, more than £20:</i> Sent separately, Insurance £750 each) Cost £26 seen or (Sent together, Insurance £1500)	E1	Not from wrong working
Cost £22 seen		
(<i>James, less than £20:</i> Sent together, Insurance £1500) Cost £17.50 seen	E1	
Valid statement or example using limit of accuracy. e.g. 'The masses could both be less than 1250g', 'One laptop could weigh 1230g and the other 1250g' 'They could have a total mass of 2460'	E1	For recognising that the limit of accuracy has an impact on the problem; allow for a total mass between 2450 and 2550 or individual masses between 1225 and 1275
One valid assumption: 'Laptops can be sent separately' 'Laptops can be sent together' 'Packaging does not increase the mass to more than 2500g'	E1	Appropriately stated; allow embedded statements eg 'If they are sent together then' or 'If they are sent separately then ' or 'If both laptops weigh less than 1250 g then' or 'Sent together'
	(4)	
$ \overset{6.}{(a)^{\star}} \overset{\mathcal{C}}{} \overset{S}{\overbrace{1}} \overset{F}{\overbrace{12}} \overset{F}{\overbrace{5}} \overset{F}{\overbrace{2}} $	B2	B1 for 12 in intersection on Venn diagram or for any 2 correct entries
$(b)^* \frac{12}{20}$ or equivalent	B1	ISW FT 'their 12' provided 'their 12' < 20
(c) $\frac{1}{13}$	B2	FT 'their 1' and 'their 13' provided 'their 1' < 'their 13' B1 for denominator of 13 or 'their 13' or numerator of 1 or 'their 1' provided the denominator < 20
	(5)	
	· · ·	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
7. 9x-5 = p(8+y) or $9x = 8p + py + 5$	B1	FT until 2nd error
$\frac{9x-5}{p} = 8+y$ or $9x-5-8p = py$	B1	FT
$\frac{9x-5}{p} = 8+y$ or $9x-5-8p = py$ $y = \frac{9x-5}{p} - 8$ or $y = \frac{9x-5-8p}{p}$	B1	FT Implies previous B2. Mark final answer.
	(3)	
8. $(1-0.04)$ ÷6 seen or implied or 0.04 + prop lime + 5 prop lime = 1 or 0.96 seen	M1	Accept in any form e.g. $6x = 0.96$ or 0.04 + x + 5x = 1
[(1-0.04)÷6]×5 or 0.16 (× 5)	M1	0.16 implies M1 M1 May be in steps
(<i>prop black</i> =) 0.8(0) or equivalent	A1	CAO
	(3)	
9. (<i>a</i>) (pressure =) 32000÷(4×10) 800 (N/m ²)	M1 A1	For a dimensionally correct calculation
(b) (area of one foot =) $450 \div 50$	M1	
9 (cm ²) seen or implied	A1	Implies M1
(area of 4 feet =) 4 × 9 (= 36 cm ²) or or for 54 ÷ 4 (= 13.5 N)	B1	Multiplies, may be seen later 'their 36'
(pressure in N/cm ² =) $54 \div 36$ or $13.5 \div 9$	M1	Allow 54÷9
or equivalent 1.5 (N/cm ²) or equivalent	A1	FT 'their 4×9 ' or 'their $1800 \div 50$ ' CAO
		Alternative method for first three marks:(volume of 4 legs =) 450×4 M11800 (cm ³) seen or impliedA11800 \div 50 (= 36 cm ²)B1
(c) (i) Any valid assumption e.g. 'The leg of the table is a prism' or 'The leg is not tapered' or 'The legs are all	E1	Allow eg 'I assumed that there was nothing on top of the table' or 'All table legs have the same volume'
supporting an equal weight' or 'The leg has a uniform cross-section.' or 'The leg is a cuboid.'		Allow an assumption they clearly made in (b) eg 'The base of the table leg is a square.'
(c)(ii) Any valid effect based on their stated assumption e.g. 'If the area (of the foot of the table) were smaller the pressure of the table would be greater' or 'The pressure would be different'	E1	Allow eg 'If there were something on top of the table the pressure would be greater'.
	(9)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
10.		
(<i>a</i>) (exterior angle =) $\frac{360}{8}$ or $45 \times 8 = 360$	M1	Accept equivalent methods
(interior angle sum =) 6×180		
(interior angle =) $180 - \frac{360}{8}$ (=135) or	A1	Do not allow $1080 \div 8 = 135$ only, there must be evidence to support 1080
$\frac{6 \times 180}{8}$ (=135)		Allow SC2 for (exterior angle is) $180 - 135 = 45$ and (exterior angle is) $360 \div 8 = 45$ or for exterior angle sum is 360 oe (exterior angle is) $180 - 135 = 45$ $45 \times 8 = 360$
(b) y+180-x+180-x+135=360 or $x = \frac{y}{2} + \frac{135}{2}$ or $\frac{y}{2} + 180-x + \frac{135}{2} = 180$	M1	Accept in any correct form
Convincing working leading to $y = 2x - 135$	A1	Given answer obtained without any wrong working seen
		If M0 then award SC1 for verification that y = 2x - 135 leads to eg 2x - 135 + 2(180 - x) + 135 = 360
One correct reason e.g. Angles on a straight line (add up to 180°), Angle sum of a quadrilateral (=360°), Symmetry of kite or equivalent	E1	Allow for one correct statement Stated appropriately NB SC1 E1 is possible
	(5)	
11. Sight of 45.5 cm 60.5 cm and 115 cm or 1.15 m	B2	If units are given they must be correct. Award B1 for any 1 correct.
115 – 45.5 – 60.5 seen or implied	M1	FT 'their 45.5, 60.5 and 115' providing all are in the same units, 'their 45.5' > 45, 'their 60.5' > 60 and 'their 115' <120 and greater than 'their 45.5 + 60.5' May be in steps
9 cm	A1	CAO; not from wrong working
	(4)	

Mark	Comment
B1	
M1	FT candidate's frequency density if table completed incorrectly but the idea of frequency density as frequency ÷ class width is used, Histogram must be attempted
A1	FT If M0 then SC1 if correct but not labelled
B2	B1 for $\frac{0.2 \times 25}{32}$ or $\frac{1}{32} \left(\frac{5}{6} \times 6 \right)$ or equivalent or for ' $\frac{27}{32}$ lasted for less than 35 minutes' or equivalent or for 5 seen
M1	4 + 2 + 9 + 5
A1	
E1	
(8)	
B3	All 4 correct Do not accept $\frac{1}{0.75}$ or 1.3 but allow correct recurring notation or 1.33() Award B2 for 3 correct. Award B1 for 1 or 2 correct.
M1	Accept any valid method
A1	Not from wrong working Accept unsupported 3 and 4 for 2 marks
	B1 M1 A1 B2 M1 A1 E1 (8) (8) B3

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
14. (a) (gradient of PQ =) $\frac{q4}{7 - 1}$ seen or	B1	
I = I		
implied $\frac{q+4}{6} = \frac{5}{3}$ seen or implied	M1	'their $\frac{q+4}{6}$ ' = $\frac{5}{3}$ FT their derived gradient;
		$\frac{q+4}{2} = 5$ implies B1 M1
<i>q</i> = 6	A1	CAO <u>Alternative method</u> From similar triangles, finds or uses the scale factor $\frac{1}{2}$ or 2 or states $\frac{5}{3}(=)\frac{10}{6}$ <u>B1</u> Forms a valid relationship to find q seen or implied eg $q+4=2\times5$ or
		(q =) 10 - 4 M1 q = 6 A1
(b) $0 = \frac{5}{3} \times 3 + c$	M1	Allow eg 0 = $\frac{5}{3} \times 3 - c$
(<i>c</i> =) –5 ISW or (0, –5)	A1	Accept $y = -5$
(c) $m_{L_2} = -\frac{3}{5}$ or equivalent, seen	B1	Allow eg $\frac{3}{-5}$ as equivalent
$1 = -5\left(-\frac{3}{5}\right) + c$	M1	FT 'their $-\frac{3}{5}$ ' provided $\neq \frac{5}{3}$ Accept other full methods e.g.
3		$\frac{y-1}{x-5} = '\text{their} -\frac{3}{5}'$
$y = -\frac{3}{5}x - 2$ or equivalent	A1	CAO
		Accept $\frac{y-1}{x+5} = -\frac{3}{5}$
	(8)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
15. (<i>a</i>)(i) <i>SÔQ</i> = 108°	B1	
Angle at centre (is twice angle at circumference)	E1	Do not allow eg 'Angle SOQ = 2Angle SPQ'
(a)(ii) $S\hat{R}Q = 126^{\circ}$	B1	Ignore any reason if stated
$(a)(iii) (O\hat{Q}R =) \frac{360 - (108 + 126)}{3}$	M1	or equivalent, FT 'their 108' and 'their 126' May be seen or implied in further work; may be in steps
$(O\hat{S}R =)\frac{360 - (108 + 126)}{3} \times 2$	M1	FT 'their 108' and 'their 126'
84°	A1	CAO
(b) Any two of $C\widehat{D}B = C\widehat{A}B$ (same segment) or equivalent $A\widehat{C}D = A\widehat{B}D$ (same segment) or equivalent $D\widehat{E}C = A\widehat{E}B$ (vertically opposite)	B2	B1 for $C\widehat{D}B = C\widehat{A}B$ same segment or equivalent or for $A\widehat{C}D = A\widehat{B}D$ same segment or equivalent or for two pairs of angles eg $C\widehat{D}B = C\widehat{A}B, A\widehat{C}D = A\widehat{B}D$ with no reason/invalid reasons stated
Correct explanation e.g. 'The triangles have the same angles (and so are similar).'	E1 (9)	May be stated or implied earlier. <u>Alternative method:</u> $AE \times EC = BE \times ED$ or states 'intersecting chords theorem' B1 $\frac{AE}{DE} = \frac{BE}{CE}$ or equivalent ratios $B1$ Correct explanation e.g. 'Corresponding sides are in the same ratio so the triangles are similar.' or eg extending the intersecting chords theorem $\frac{AE}{DE} = \frac{BE}{CE} = \frac{AB}{DC}$ (so the triangles are similar) $E1$

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
16.		
(a)(i) $\frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{15\sqrt{5}}{5}$ or $\frac{3 \times 5}{\sqrt{5}}$	M1	
3√5	A1	implies M1
(<i>a</i>)(ii) 10√3−3√3	M1	
7√3	A1	
(b) Expands $ab - a\sqrt{2} + b\sqrt{2} - \sqrt{2} \times \sqrt{2}$	M1	Allow one error in expansion; may be in a grid
Identifies ab as an integer and $\sqrt{2} \times \sqrt{2}$ as an integer	M1	May be implied eg ab – 2 is an integer
(Not correct as) an integer when <i>a</i> = <i>b</i> or equivalent	A1	$a = b \text{ must be seen or implied at some point}$ $\frac{Alternative \text{ method } 1}{\text{Stating eg 'difference of two squares if } a = b'}$ $B1$ Shows eg $a^2 - 2$ $M1$ Concludes integer $A1$ $\frac{Alternative \text{ method } 2}{\text{Uses equal numerical values of } a \text{ and } b \text{ and}}$ expands with at most one error eg $(7 + \sqrt{2})(7 - \sqrt{2}) = 7 \times 7 - 7\sqrt{2} + 7\sqrt{2} - \sqrt{2} \times \sqrt{2}$ $M2$ Or $M1$ for using numerical unequal values of a and b and expands with at most $nequal values of a \text{ and } b$ $nequal values of a \text{ and } b$ $nust be the same$
		Correct numerical working and integer answer A1
	(7)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
17. Radius of outer circle = 13 or half the chord = 12	B1	May be on diagram
$(radius inner circle)^2 + 12^2 = 13^2$	M1	
r = 5 seen or implied	A1	
$x^2 + y^2 = 5^2$	A1	FT 'their derived 5'
		If zero scored allow SC1 for $12^2 + 5^2 = 13^2$ or $12^2 + 5^2 = 169$ only
	(4)	
18 (<i>a</i>) Reflection in <i>x</i> -axis	B1	Ignore coordinates for this mark; vertex must be on the positive <i>x</i> -axis
Correct coordinates seen or scale marked	B1	(0, -2)
(b) Translation through $\begin{pmatrix} 0 \\ k \end{pmatrix}$ where $k < 0$	B1	Ignore coordinates for this mark; vertex must be in 4th quadrant;
Correct coordinates seen or scale marked	(4)	(0, -1) (1, -3)

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
19. (a) $R \propto \sqrt{x}$ or $R = k\sqrt{x}$	M1	
$900 = k\sqrt{81}$	M1	Implies first M1
<i>k</i> =100	A1	
(<i>R</i> =)100√9	M1	FT 'their 100'
$(R =) 300 (\text{cm}^3 \text{ per min})$	A1	FT
		Alternative method using proportions
		Sight of $\frac{900}{\sqrt{81}}$ or $\sqrt{81}$ (:) 900
		Could be implied in later working <i>B1</i>
		$\frac{900}{\sqrt{81}} = \frac{R}{\sqrt{9}}$ or compares
		$\sqrt{81}$ or 9 (:) 900 with
		√9 or 3 (:) 300 <i>M1</i>
		$\frac{900}{\sqrt{81}} \times \sqrt{9} = R$ seen or implied <i>M1</i>
		$100 \times \sqrt{9} (= R)$ seen or implied <i>M1</i>
		(R=) 300 (cm ³ per min) A1
(b) $400 = 100\sqrt{x}$ or $\frac{1}{100} = \frac{\sqrt{x}}{400}$ or equivalent or $(\sqrt{x} =)\frac{400}{100}$ or $(\sqrt{x} =)4$	M1	FT 'their 100'
(x=)16 (cm)	A1	Not from wrong working
	(7)	
20.		
(a) $g(9) (=9^2 - 1) = 80$	B1	or for $hg(x) = 3(x^2 - 1)$
h(80) = 240 or $hg(9) = 240$	B1	FT 'their $9^2 - 1$ ' or 'their $3(x^2 - 1)$ '
(b) h(2x) = 3(2x)	M1	or for $gh(x) = (3x)^2 - 1$
$gh(2x) = \left(6x\right)^2 - 1$	M1	FT 'their $gh(x)$ ' or 'their $h(2x)$ '
$gh(2x) = 36x^2 - 1$	A1	CAO
	(5)	

Eduqas Summer 2017 GCSE (9-1) Mathematics Component 1: Higher Tier	Mark	Comment
21. (a) 20 – x	B1	Accept $\frac{48x}{160+2x}$
(b)(i) $\frac{160}{x} + 2 = \frac{48}{20 - x}$ or $\frac{48x}{160 + 2x} = 20 - x$ or equivalent	M2	FT 'their two-term $20 - x$ ' for M2
		M1 for $\frac{48}{20-x}$ or
		M1 for $\frac{160}{x} + 2 = 'their \frac{48}{20-x}'$ or equivalent
		if 'their $20 - x$ ' is not two-term ' <i>their</i> $\frac{48}{20 - x}$ ' must be in terms of x
Attempts to clear both of the fractions or attempts to use a common denominator on left hand side and cross multiply 160(20-x) + 2x(20-x) = 48x or equivalent	M1	FT 'their two-term $20 - x$ '
Expanding the brackets $3200-160x+40x-2x^2 = 48x$ or equivalent	M1	FT 'their two-term $20 - x$ '
Collects terms and correctly simplifies to $x^2 + 84x - 1600 = 0$	A1	Convincingly shown as answer given
(b)(ii) (x + 100)(x - 16)	M1	Correct factorisation or correct application of the quadratic formula as far as $b^2 - 4ac$ simplified; Solution of equation may be seen in part (b)(i), allow the marks if this is the case
x = 16 or $x = -100$	A1	נטונוז, מוטש נוופ ווומוג'ה זו נווה זה נוופ כמהפ
[motorbike used] 4 [litres]	A1 (9)	No FT on part (a) here

PMT