

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE In Mathematics B (4MB0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 4MB0_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017 General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the **mark scheme to a candidate's** response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - o A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - o cao correct answer only
 - o ft follow through
 - o isw ignore subsequent working
 - o SC special case
 - o oe or equivalent (and appropriate)
 - o dep dependent
 - o indep independent
 - o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

M1 A1	otal 2 i
M1 A1	
A1	
То	otal 2 r
B1	1
B1 ft	1
Тс	otal 2 1
M1	
A1	2
Т	
	To B1 B1 ft M1

	2250 1000		1000 1250	$C \ u \ D \leq 2$	0	
55 054	$233^{\circ} - 180^{\circ}$	UK	180° - 125°			2
55,05.	5, 1155E, 1155 E			AI	Total 2	4 marks
7 2(-3)	$)^{3} + 7(-3)^{2} + k(-$	(3) - 30 = 0	(-54 + 63 - 3k - 30 = 0)	M1	1000012	
(OR met	hod leading to a c	correct linea	r equation in <i>k</i> , e.g.			
$(x+3)2x^3$	$\frac{2x^2 + x + (k - 3)}{x^3 + 7x^2 + kx - 30}$	requires -3	0-3(k-3)=0 oe (M1))			
(OR com	nparing coefficien	ts: $(x+3)(a$	$ax^2 + bx + c) = 2x^3 + 7x^2 + kx$	+ <i>c</i>		
with $a =$	=2, 3a+b=7 (b)	= 1), 3 <i>c</i> = -	-30 (c = -10), k = 3b + c oe (M)	м1))		
k = -7				A1	2	
					Total 2	marks
8 (a) 2				B1	1	
(b) 2				B1	1	2
					Total 2	marks
9 Probabi	ility = $((1 \times) \frac{9}{39} \times \frac{3}{39})$	$\frac{8}{8}$ oe or $\left(\frac{1}{4}\right)$	$\frac{0}{40} \times \frac{9}{39} \times \frac{8}{38} \right) (\times n) \text{ [n is an in]}$	teger] M1		
$\frac{72}{1482}, \frac{1}{2}$	$\frac{12}{247}$, oe or awrt 0.	049, awrt 4.	9%	A1		2
SC: $4\left(\frac{1}{4}\right)$	$\left(\frac{1}{4}\right)^3$ of or $1 \times \frac{1}{4} \times \frac{1}{4}$	$(=\frac{1}{16}$ [must	t see working]) scores M1 A0			
					Total 2	marks

6 labelled diagram showing correct angle at A or B with $180 \le angle$ at $B \le 270$

10 Breaking 432 into (144) \times 3 or (16) \times 27 AND 243 into (81) \times 3 or (9) \times 27 where bracketed number may be written as a product

OR 432 AND 243 as a product of prime factors $(432 = 2^4 \times 3^3, 243 = 3^5)$ M1

$\sqrt{(3 \times 2^2)^2 \times 3 - \sqrt{9^2 \times 3}}$ or $(3 \times 2^2)\sqrt{3} - 9\sqrt{3}$ or $4\sqrt{27} - 3\sqrt{27}$		
oe, e.g. (from working) $12\sqrt{3} - 9\sqrt{3} (= 3\sqrt{3})$ [manipulating both surds	correctly]	
NB : $12\sqrt{3} - 9\sqrt{3} \text{ or } 3\sqrt{3}$ with no working gains M0M0A0	M1 (DE	P)
$\sqrt{27}$ or $n = 27$	A1	3
	Tota	al 3 marks
11 $AP \times 9 = 6 \times 3$ or $AP = 2$ or $9 + 2$ (=11)	M1	
$r = \frac{9 + "AP"}{2}$	M1 (DE	P)
$r = 5.5, 5\frac{1}{2}, \frac{11}{2}$	A1	3
	Tota	ul 3 marks
12 $x^2 - 4x - x + 4 (= -2)$ or $x^2 - 5x + 4 (= -2)$ or $x^2 - 5x + 6 (= 0)$		
(oe, expanding with at least three terms from x^2 , $-4x$, $-x$, $+4$ correct)	M1	
(Factorising any 3 term quadratic)		
$(x-2)(x-3)(=0)$ or $\frac{5\pm\sqrt{25-4\times1\times6}}{2}$ oe	M1	

Or factorising which when expanded, the result must give at least 2 of their 3 terms from their trinomial, e.g. (x - 6)(x - 1)(=0) will give x^2 and +6 terms

<i>x</i> =	2, 3 (ca	o dependent on M1 earned earlier)	A1	cao	3
]	Fotal 3 1	narks
13	$\frac{\sin \angle ACB}{5} = \frac{\sin 40}{6} \qquad \text{oe}$		M1		
	$\angle ACB = \sin^{-1}\left(\frac{5 \times \sin 40}{6}\right) $	$sin^{-1}((0.535)656341)$	M1 (DEP)	
	$\angle ACB = 32.3 - 32.4$ (32)	2.3884)	A1		3
]	Fotal 3 1	narks
14	(9-5):(x-5) = 2:5 oe	or $2:5 = 4:10$ or car <i>B</i> was 10 (yrs)	M1		
	$\frac{9-5}{x-5} = \frac{2}{5}$ oe, e.g. $2x - 10$	= 20 or 10 + 5	M1		
	<i>x</i> = 15		A1		3

$\mathbf{S} = \mathbf{B} \mathbf{I} \text{ for } \mathbf{S} \wedge \mathbf{I} \mathbf{I} = \mathbf{I} \mathbf{S} + 2\mathbf{x}, \mathbf{x} = \mathbf{S} \mathbf{S} (\mathbf{S} \mathbf{y} \mathbf{I} \mathbf{S} \text{ time}) [\text{working needed}]$		
	Tota	al 3 marks
15 $\overrightarrow{AP} = \frac{1}{2} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \left(= \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right)$	M1	
$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \begin{pmatrix} 1\\1 \end{pmatrix} + "\begin{pmatrix} 3\\1 \end{pmatrix}"$	M1(DEI	P)
OR C is the point $(6+1, 2+1) [= (7, 3)]$ or OC = $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$ (M1)		
<i>P</i> is the mid-point of <i>AC</i> so <i>P</i> is $\left(\frac{7+1}{2}, \frac{3+1}{2}\right)$ (M1)		
(4, 2)	A1	3
	Tota	al 3 marks
16 $\frac{1}{b} = \frac{2}{c} - \frac{1}{a}$ or $-\frac{1}{b} = \frac{1}{a} - \frac{2}{c}$	M1	
$\frac{1}{b} = \frac{2a-c}{ac} \text{or } b = \frac{1}{\left(\frac{2a-c}{ca}\right)} \text{ or } b = \frac{1}{\left(\frac{2}{c}-\frac{1}{a}\right)} \text{oe (positive } b)$	M1	
OR $ca = 2ab - bc$ oe (remove denominators and collect terms in	<i>b</i>) (M1)	
ca = b(2a-c) (factorises)	(M1)]	
NB: Allow a maximum of 1 sign slip in the 2 M marks		
$b = \frac{ac}{2a-c}$ or. $b = \frac{-ac}{c-2a}$	A1	3
	Tota	al 3 marks

	$84 = 2 \times 3 \times 7$		
17 (i)	$126 = 2 \times 3^2 \times 7$	(prime factors of at least 2 of 84, 126 and 294)	
	$294 = 2 \times 3 \times 7^2$		
	$84 = 42 \times 2$		
OR	$126 = 42 \times 3$		M1
	$294 = 42 \times 7$		

OR	$2^2 \times 3^2 \times 7^2$ or $2 \times 3 \times 7$			
LCM	<i>I</i> = 1764	A1	2	
(ii) HCF	5 = 42	B1	1	3
NB: The M1A0B1	M mark can be awarded in either (i) or (ii), so if one	is correct M1A1B	0 or	
Special (Case: If LCM & HCF are correct but wrong way roun	nd award M1A0B	l.	
	$\mathbf{O}_{\mathbf{M}} = \mathbf{O}_{\mathbf{M}} + $	T 4	1.2	nlza
	One correct in wrong place is MIA0B0	Tota	I 5 ma	rks
18 Nume	erator: $y(2w+x)-3x(x+2w)$ OR $2w(y-3x)+x(x+2w)$	(y-3x) (oe) M1	<u>1 3 ma</u>	
18 Nume Denon	erator: $y(2w+x)-3x(x+2w)$ OR $2w(y-3x)+x(2w)$ minator: $2y(y-3x)$	y-3x) (oe) M1 M1 (I 5 ma)

$\frac{2w+x}{2y}$	A1 4		
	Total 4		

]	Fotal 4	marks
1.8×10^{-149}	A1	2	4
or $m \times 10^{-149}$ where $0 < m \le 10$	M1		
(b) 1.8×10^n or 0.18 ($\frac{9}{50}$ or their attempt at $9 \div 50$) × 10^{-148}			
(ii) 0.05	B1	2	

- 20 - 2.	$x + \Delta x$	(oe) or	for an answer of $x = -6$ or x and -6	written with wrong
inequality	sign			M1

	Т	otal 4	marks
21 (a) $\angle CAD = 34^{\circ}$	B1	1	
(b) $\angle CBD = "34^\circ"$ clearly defined (could be on diagram)	B1ft		
$\angle ABC = 124^{\circ}$	B1		
Angle in semicircle and Angles in the same segment (oe wording)	B1	3	4
$\begin{bmatrix} OR & \angle ODC = 56^\circ \text{ clearly defined} & (B1) \end{bmatrix}$			
$\angle ABC = 124^{\circ}$ (B1) Isosceles triangle ($\triangle OCD$) or right angled triangle (ACD) or angles in a	triangl	e	
and Cyclic Quad (B1)			
$\begin{bmatrix} OR \angle AOC = 180 + 68 (= 248) \text{ clearly defined} & (B1) \end{bmatrix}$			
$\angle ABC = 124$ (B1)			
Straight line & angle at centre double angle at circumference (oe wording) NB: Accept angles on their diagram Other methods are acceptable, but reasons must be relevant to method user 2 relevant correct reasons needed.) B1] d – at 1 T (east otal 4	marks
22 (a) $\begin{pmatrix} 7 & 17 \\ -15 & 14 \end{pmatrix}$ B1, B1	(-1eed	00)	2
(b) $\begin{pmatrix} 26 & -38 \\ -38 & 31 \end{pmatrix}$ B1 (1 st	row)		
B1 (2 ⁿ	^d row)	2	4
	Т	otal 4	marks
23 900 = $k \times 2^2$	M1		
$k = \frac{900}{2^2}, 225$	M1 (I	DEP)	
$\left[\text{OR } k = \frac{900}{4} = \frac{36}{x^2} \right] $ (M1)			

$x^2 = \frac{36 \times 4}{900} \tag{oe}$	(M1 (DEP))]		
$x = \sqrt{\frac{36}{225''}}$ oe, e.g. $\sqrt{\frac{4}{25}}$ or $\sqrt{0.16}$ or $x = 0.4$ or $\frac{2}{5}$ oe e.g. $\frac{6}{15}$			
	M1 (E	DEP)	
$x = \pm \frac{2}{5}, \pm \frac{6}{15}, \pm 0.4$	A1		4
	Т	otal 4	marks
24 (a) $\frac{-2+14+18+2x+3x}{5} = \frac{5x+2}{4}$ or e.g. $\frac{30+5x}{5} = \frac{5x+2}{4}$	M1		
e.g. $4(30 + 5x) = 5(5x + 2)$ or $24 + 4x = 5x + 2$ oe i.e. correct rearrangement with no denominators	M1		
x = 22	Al	3	
(b) 18	B1ft	1	4
NB: ft on " <i>x</i> = 22"			
	Te	otal 4	marks
25 (a) $v = -12t + 57$ (one term correct)	M1		
Correct	A1	2	
(b) " $-12t + 57$ " = 0 ft their (a) [but not displacement]	M1		
$t = \frac{57}{12}$, 4.75 (s) oe, e.g. $\frac{19}{4}$	A1	2	
(c) $x = -6 \times \left(\left\ \frac{57}{12} \right\ \right)^2 + 57 \times \left(\left\ \frac{57}{12} \right\ \right) + 27$	M1		
x = 162.375 accept answers in range $162 - 162.4$	A1	2	6
	Т	ntal 6	morke

26 (a) Triangle <i>ABC</i> drawn correctly.	B1	1
(b)(i) Arc, radius 4 cm, centre <i>B</i> , drawn within triangle <i>ABC</i>	B1ft	
(ii) Three sets of arcs of correct radii, one of which is centred at <i>B</i> ,		
one centred on correct point on BC and ditto on AB	M1ft	

Angle bisector drawn so that it intersects AC	A1	3	
(c) Correct region shaded or clearly indicated on correct diagram. [bordered by 3 straight lines and 1 curve]	B1ft T	1 'otal 5 n	5 narks
27 Cosine Rule: $(x+9)^2 = 7^2 + (2x)^2 - 2 \times 7 \times (2x) \times \cos 65$			
$\left[\text{Or} \qquad \cos 65 = \frac{(2x)^2 + 7^2 - (x+9)^2}{2 \times 7 \times 2x} \right]$			
(Condone lack of brackets but other than this, cosine rule must be co	orrectly stat B1	ed)	
$x^{2} + 18x + 81 = 49 + 4x^{2} - 11.8x$ (expanding $(x+9)^{2}$ and $(2x)^{2}$ condour rule for this mark or $x^{2} + 18x + 81 = 49 + 4x^{2} - 28x\cos(65^{\circ})$ or $4x^{2} + 40x + 6x^{2} + 18x + 81$	ne 1 error o	nly in co	osine
$\cos 65 = \frac{4x^{2} + 49 - (x^{2} + 18x + 81)}{28x}$ or $\cos 65 \times 28x = 4x^{2} + 49 - (x^{2} + 18x + 81) \text{ oe} \qquad M1$ NB: 11.8 or better can be used throughout (11.83331133)			
$3x^2 - 29.8x - 32(=0)$ (or better ie 29.83331)	A1		
$x = \frac{-"(-29.8)" \pm \sqrt{("(-29.8)"^2 - 4 \times "3" \times "(-32)")}}{2 \times "3"}$			
(solving a trinomial quadratic, values correctly subst'd)	M1 D	NDEP	
$(\sqrt{1272} \rightarrow \sqrt{1274}) (= 35.7)$	B1		
$(x_{+} = 10.9(2114), x_{-} = -0.976(7))$			
x = 10.9 (given as the only answer) cao	A1		6
	Т	'otal 6 n	narks

$$28 \text{ (a)} \left(\frac{27}{729}\right)^{\frac{1}{3}} \text{ (oe, eg } \frac{1}{3}\text{) or as a ratio, e.g. } 27^{\frac{1}{3}}\text{ ; } 729^{\frac{1}{3}} \text{ (o.e. eg } 1\text{ ; } 3\text{) } M1$$

$$\left(\frac{27}{729}\right)^{\frac{1}{3}} \times 15 \text{ oe} \qquad M1 \text{ (DEP)}$$

5 (cm)	A1 3			
(b) [Finds height of <i>C</i> and then base area of <i>C</i>]				
$\left(\frac{1728}{729}\right)^{\frac{1}{3}} \times 15$	M1			
20 (cm)	A1			
Base area × "20" = 1728 or $\pi r^2 \times 20 = 1728$ or $1728 \div 20$	M1 (DEP)			
OR [Finds radius of B , then radius of C and then base area of C]				
$(729 = \pi r_B^2 \times 15 \text{ gives } r_B = 3.93317435)$	(M1)			
$r_{c} = \left(= "3.93292" \times \left(\frac{1728}{729}\right)^{\frac{1}{3}} \right) = 5.244$	(A1)			
Base area = $\pi \times "r_{c}"^{2}$	(M1(DEP))			
OR [Finds base area of B , then area SF (B to C) then uses these for base area of C]				
Base area of $B = \frac{729}{15} = 48.6$	(M1)			
Area scale factor = $\left(\frac{1728}{729}\right)^{2/3}$	(A1)			
Base area = $\frac{729}{15} \times \left(\frac{1728}{729}\right)^{2/3} (48.6 \times \frac{16}{9})$	(M1(DEP))			
Base area = $86.3 - 86.4$ (cm ²)	A1 4 7			
	Total 7 marks			

NB: students who use height A can be awarded ft marks for an incorrect (a)

Volume A:C = 27:1728 (=1:64) (M1)
Height A:C =
$$1^{\frac{1}{3}}:64^{\frac{1}{3}}$$
 (= 1:4) (A1)
Height of C = 4 × "5" (=20)
Base area of C = 1728 ÷ "20" (M1)

		Т	Total 6 marks		
(c) <u>-</u>	$\frac{75}{.65}, \frac{15}{33}, \frac{5}{.11}$ awrt 0.455	B1	1	6	
Tota	number of passengers = 165	A1	2		
	(i.e. $40 + 50 + 60 + 15$)	M1			
OR	" 40 " + 50 + 600 × 0.1 + 150 × 0.1				
OR	" 40 " + 50 + 60 × 1 + 15 × 1				
OR	"40" + 50 + 24 × 2.5 + 6 × 2.5				
OR	" 40 " + 50 + 6 × 10 + 1.5 × 10				
(b) us	ing FDs: number of passengers = " 40 " + 50 + 4 × 15 + 3 × 5				
Numb	er of passengers = 40	A1	3		
(i.e. n	nethod that follows from previous mark)	M1			
4×10	, $16 \times 2.5, 40 \times 1, 400 \times 0.1$				
Passer	ngers travelling ≤ 20 km: 2×20 (using FD × width of bar)				
OR	$1 \times 2 \text{ mm square} = (\text{frequency}) 0.1$	B1			
OR	$10 \times 2 \text{ mm squares} = (\text{frequency}) 1$				
OR	$1 \text{ cm} \times 1 \text{ cm} \text{ square} = (\text{frequency}) 2.5$				
OR	$2 \text{ cm} \times 2 \text{ cm} \text{ square} = (\text{frequency}) 10$				
	FD of 5 seen or written on top of FD axis oe				
29 (a)	Relating area to frequency e.g. by showing:				

TOTAL 100 MARKS