

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/33

Paper 3 (Core) May/June 2016

2 hours

Candidates answer on the Question Paper.

Additional Materials: Electronic calculator Geometrical instruments

Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 104.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

			2		
1	Aw	ildlif	fe park covers an area of 18 hectares.		
	(a)	The	e 18 hectares is divided between enclosures, paths and buildings in the ratio		
			enclosures: paths: buildings = 11:14:5.		
		(i)	Show that the area for enclosures is 6.6 hectares.		
					[1]
		(ii)	Calculate the area for paths and the area for buildings.		
			Paths	hectares	
			Buildings	hectares	[2]
	(b)	Oft	the 6.6 hectares for enclosures, $\frac{7}{11}$ is for mammals and 30% is for reptiles.		
		Cal	culate the area for mammals and the area for reptiles.		
			Mammals	hectares	
			Reptiles	hectares	[2]

(c) The table shows the opening times of the wildlife park.

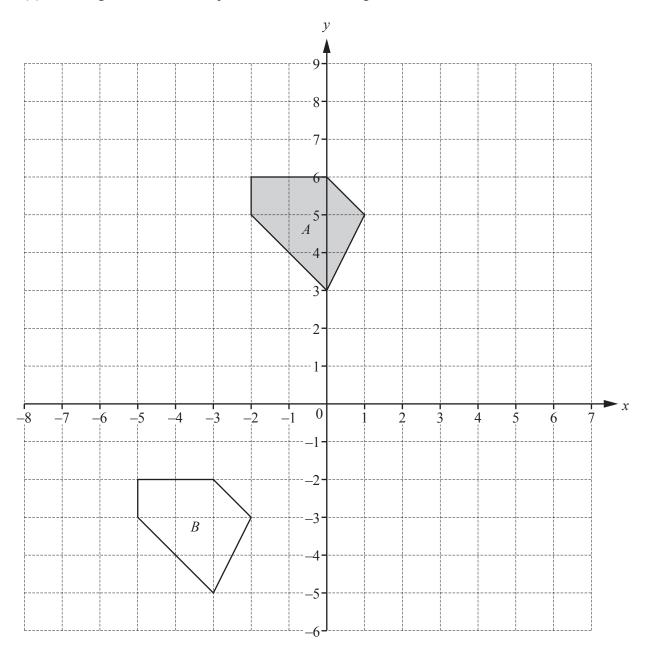
Days	Opening times
Monday to Friday	09 30 to 17 15
Saturday and Sunday	1000 to 1830

			Saturday and Sunday	1000 to 1830	
	(i)	Work out ho	ow long, in hours and minutes	s, the wildlife park is open	on a Wednesday.
	(ii)	Calculate th	e total time, in hours and mir	nutes, that the wildlife parl	k is open in one week.
					h min [2]
(d)	Thi	s table shows	the ticket prices for the wildl	ife park.	
			Adult	\$11.00	
			Senior (age 65 and over)	\$9.25	
			Child (age 4 to 16)	\$7.50	
			Child (age 3 and under)	Free	
			wildlife park with his wife, the	neir children (aged 6 and 2)
	(i)	Work out th	e total cost of the tickets for t	his visit.	
					[2]
	(ii)	Mr Lu has a	voucher for the wildlife park	that reduces the total cos	t of the tickets to \$42.
		Calculate th	e percentage saving.		
					% [3]

2 (a)

	NOT TO
	SCALE
200	
36° \	

The diagram shows 2 sides of a regular polygon with exterior angle 36°.


For this regular polygon, work out

(i) the number of sides,

(ii)	the interior angle,	[2]
(iii)	the sum of the interior angles.	[1]

.....[1]

(b) The diagram shows two shapes, A and B, on a 1 cm² grid.

(i) Find the area of shape A.

..... cm² [1]

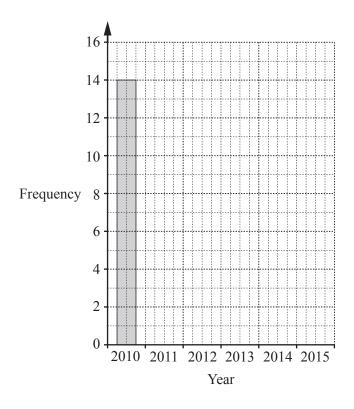
(ii) Describe fully the **single** transformation that maps shape A onto shape B.

(iii) On the grid,

(a) draw the reflection of shape A in the line x = 2, [2]

(b) draw the enlargement of shape A with scale factor 2 and centre (1, 5). [2]

3


		gram shows a cylindrical flower vase ius, r , and height, h .		
The	volu	time, V , of the vase is $V = \pi r^2 h$.		NOT TO SCALE
The	surf	Face area, A, of the vase is $A = 2\pi rh + \pi r^2$.	h	SCALE
(a)	The	e vase has radius 4 cm and height 15 cm.	$r \rightarrow r$	
	(i)	Calculate the volume of the vase. Write down the units of your answer.		
	(ii)	Calculate the surface area of the vase.		[3]
(b)	Mal	ke h the subject of the formula $A = 2\pi rh + \pi r^2$.		cm ² [2]
(c)	Fac	torise completely. $2\pi rh + \pi r^2$:	[2]
(d)	Δno	other cylindrical flower vece has radius 6 cm and height 22 5 cn		[2]
(d)	(i)	other cylindrical flower vase has radius 6 cm and height 22.5 cm. For this vase and the vase in part (a) the ratio of the radii is 4		
	(1)	and the ratio of the heights is 15: 22.5.	0	
		Write these ratios in their simplest form.		
		4:6=	·: :	
		15 : 22.5 =	·: :	[2]
	(ii)	Write down a mathematical word to complete the statement.		
		The ratios show that the two vases are	e	[1]

4 A garage sells second-hand cars.

The table shows the number of cars sold and the year they were made.

Year	2010	2011	2012	2013	2014	2015
Frequency	14	13	4	8	0	11

(a) Complete the bar chart to show this information.

(b) For these cars, write down the modal year.

.....[1]

[2]

(c) The garage sold 6 cars last week.

The selling prices in dollars are list.

The selling prices, in dollars, are listed below.

920 1070 3100 2240 2650 1840

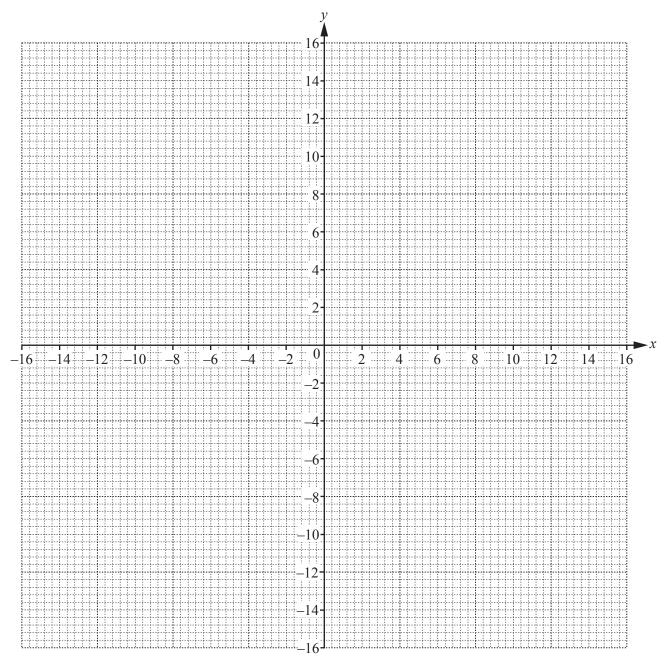
(i) Work out the range.

\$.....[1]

(ii) Work out the median.

\$.....[2]

(iii) Calculate the mean.


\$.....[2]

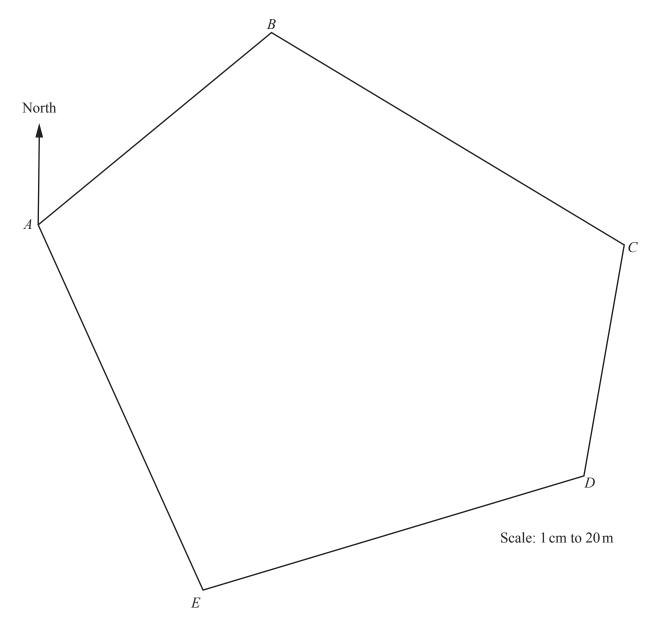
5 (a) (i) Complete the table of values for $y = \frac{16}{x}$, $x \neq 0$.

x	-16	-8	-4	-2	-1	1	2	4	8	16
у	-1	-2		-8		16		4	2	

[2]

(ii) On the grid, draw the graph of $y = \frac{16}{x}$ for $-16 \le x \le -1$ and $1 \le x \le 16$.

[4]


(b)	Write down the order of rotational symmetry of your grap	oh.
		[1]
(c)	One line of symmetry crosses the graph twice.	
	(i) Draw this line of symmetry on the grid.(ii) Write down the equation of this line of symmetry.	[1]
(d)	By drawing a suitable line on the grid, solve the equation	$\frac{16}{x} = 7.$
		<i>x</i> = [2

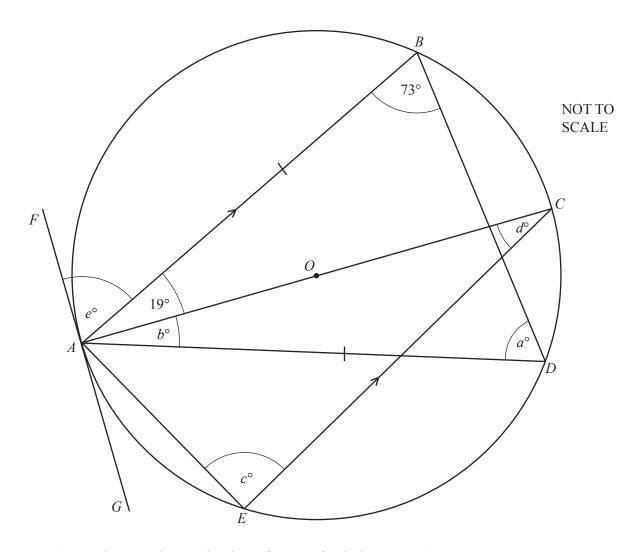
(a) F	or the integers from 40 to 70, write down	
(a multiple of 19,	
(i	a common multiple of 6 and 8,	[1]
		[1]
(ii) the square root of 2500,	
(i·) a factor of 106,	[1]
		[1]
(an odd number where the tens digit is double the units digit,	
(v	a number that is both a square number and a cube number,	[1]
		[1]
(vi	a number that has exactly 3 factors,	
(vii) three prime numbers.	[1]
		,
	(iii) (iv) (vi)	 (ii) a common multiple of 6 and 8, (iii) the square root of 2500, (iv) a factor of 106, (v) an odd number where the tens digit is double the units digit, (vi) a number that is both a square number and a cube number, (vii) a number that has exactly 3 factors, (viii) three prime numbers.

(b) Write 234 as a product of its prime factors.

	Vrite the answer to $3^4 \times 3^7$ i) in the form 3^x ,	[2]
(i	i) as an integer,	[1]
(ii	i) in standard form.	[1]
(d) (i) Write 3^{-2} as a fraction.	[1]
(i	i) Find the value of $3x^0$ when $x = 5$.	[1]

7 The scale drawing shows a park, *ABCDE*. The scale is 1 centimetre represents 20 metres.

(a) Measure the bearing of B from A.


Г	1	1
	1	ı

All constructions in the following parts must be completed using a straight edge and compasses only. All construction arcs must be clearly shown.

(b) A straight cycle path crosses the park from E to BC.

	The	path	bisects angle AED.	
	(i)	Con	struct the cycle path.	[2]
	(ii)	Wor	k out the actual length, in metres, of the cycle path.	
			m	[2]
	(iii)	Alic	e cycles from E to BC along the path at a constant speed of 9 km/h.	
		(a)	Show that 9 km/h is equivalent to 2.5 m/s.	
				[1]
		(b)	Find the time she takes to cycle from <i>E</i> to <i>BC</i> .	
		(6)	Give your answer in seconds.	
			S	[2]
(c)	A st	raigh	footpath, equidistant from D and E , crosses the park from DE to AB .	
	Con	struct	the footpath.	[2]
(d)	(i)	Con	struct the locus of points 150 metres from A and inside the park.	[2]
	(ii)	A re	gion for sports activities is less than 150 metres from A and closer to E than to D .	
		Shao	de this region.	[1]

8

A, B, C, D and E are points on the circumference of a circle, centre O. GAF is a tangent to the circle at A. AB is parallel to EC and AB = AD.

(a) Write down the mathematical name of triangle ABD.

.....[1]

(b)	Fine	I the value of	
	(i)	a,	
			<i>a</i> =[1]
	(ii)	b,	
			b =[1]
	(iii)	<i>c</i> ,	
			c =[1]
	(iv)	d,	
			d =[1]
	(v)	e.	
			e =[2]
(c)	The	diameter, AC, of the circle is 13 cm.	
		culate the circumference of the circle.	
	Giv	e your answer correct to 1 decimal place.	
			cm [3]
sion	to repro	Question 9 is printed on the next purpose duce items where third-party owned material protected by copyright is included.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

	ll the edges h	nave the same le	ength.	ges.				
W	rite down the	e mathematical	name of t	his solid.				
(b) He	ere is a seque	ence of diagram	s made fro	om identical	square tile	S.		
	Diagram 1	Diagram 2		Diagram 3		Dia	gram 4	
(i)) On the gr	id, draw Diagra	ım 4.					
(ii)		the table.						
	Diag	gram	1	2	3	4	5	
	INUI	mber of tiles	1	5	9			
(iii)) Find an ex	xpression, in te	rms of n , 1	for the number	er of tiles i	n Diagram	ı <i>n</i> .	
(iii)		xpression, in te			er of tiles i		n.	
					er of tiles i			
(iv)) Find the r	number of tiles	in Diagrar		er of tiles i			
) Find the r A box cor	number of tiles	in Diagrar se tiles.	m 19.				
(iv)) Find the r A box cor (a) Diag	number of tiles $\frac{1}{2}$ ntains 98 of the gram x is made	in Diagrar se tiles.	m 19.				
(iv)) Find the r A box cor (a) Diag	number of tiles	in Diagrar se tiles.	m 19.				
(iv)) Find the r A box cor (a) Diag	number of tiles $\frac{1}{2}$ ntains 98 of the gram x is made	in Diagrar se tiles.	m 19.				
(iv)) Find the r A box cor (a) Diag	number of tiles $\frac{1}{2}$ ntains 98 of the gram x is made	in Diagrar se tiles.	m 19.	oossible fro	om this box		
(iv)) Find the r) A box cor (a) Diag Find	number of tiles number of tiles number of the state of x .	in Diagrar se tiles. from as m	n 19. any tiles as p	oossible fro	om this box $x = \dots$		
(iv)) Find the r) A box cor (a) Diag Find	number of tiles $\frac{1}{2}$ ntains 98 of the gram x is made	in Diagrar se tiles. from as m	n 19. any tiles as p	oossible fro	om this box $x = \dots$		