4472 020001

Surname

Other Names

Centre Number

wjec cbac

GCSE

4472/02

ADDITIONAL SCIENCE/CHEMISTRY

CHEMISTRY 2 HIGHER TIER

A.M. THURSDAY, 19 May 2016

1 hour

For Examiner's use only									
Question	Maximum Mark	Mark Awarded							
1.	6								
2.	12								
3.	6								
4.	6								
5.	8								
6.	7								
7.	9								
8.	6								
Total	60								

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

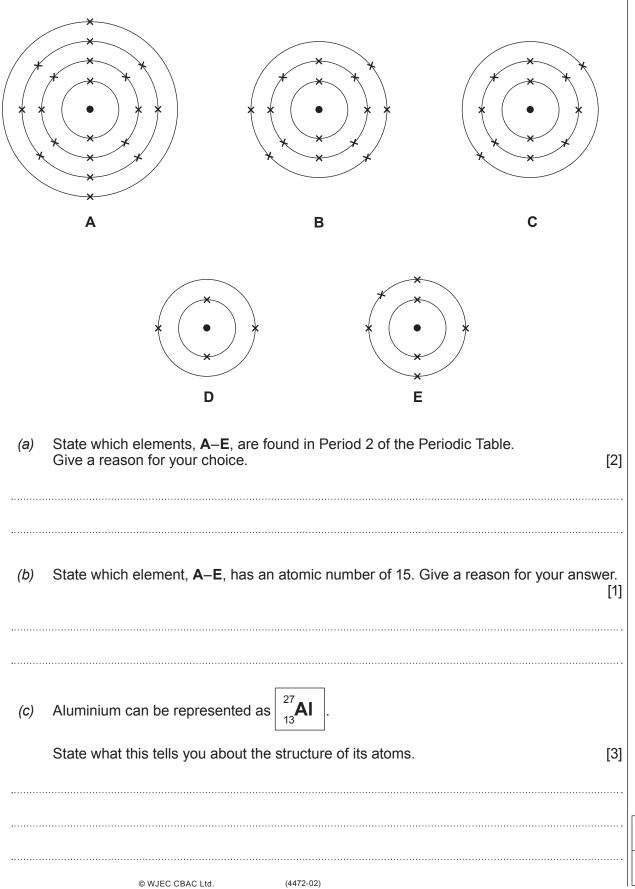
Write your answers in the spaces provided in this booklet.

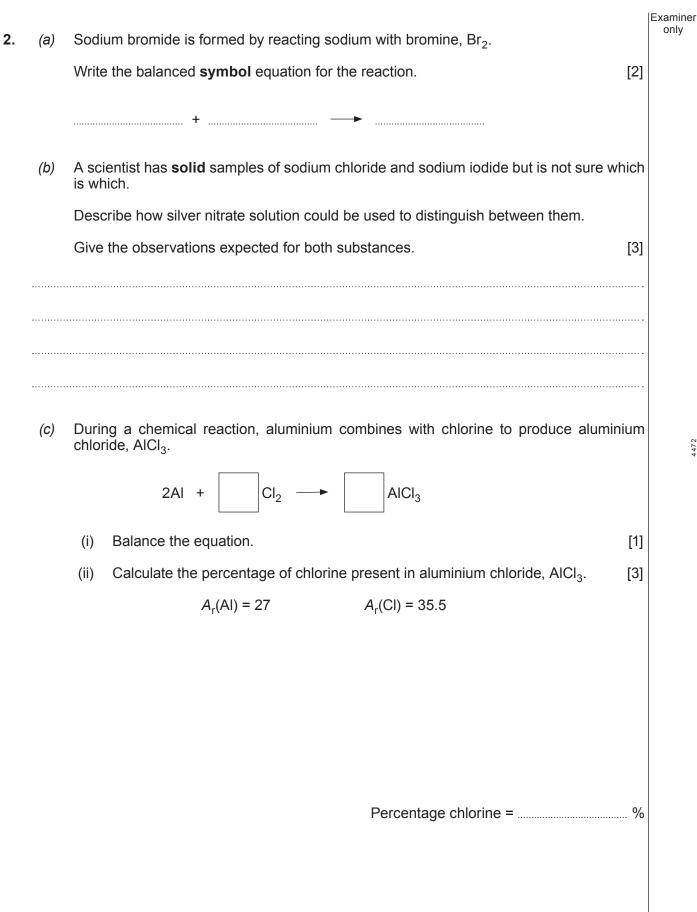
INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answers to questions 3 and 8.


The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.


Examiner only

2

Answer all questions.

1. The following diagrams show the electronic structures of five different elements, A–E.

Examiner

[1]

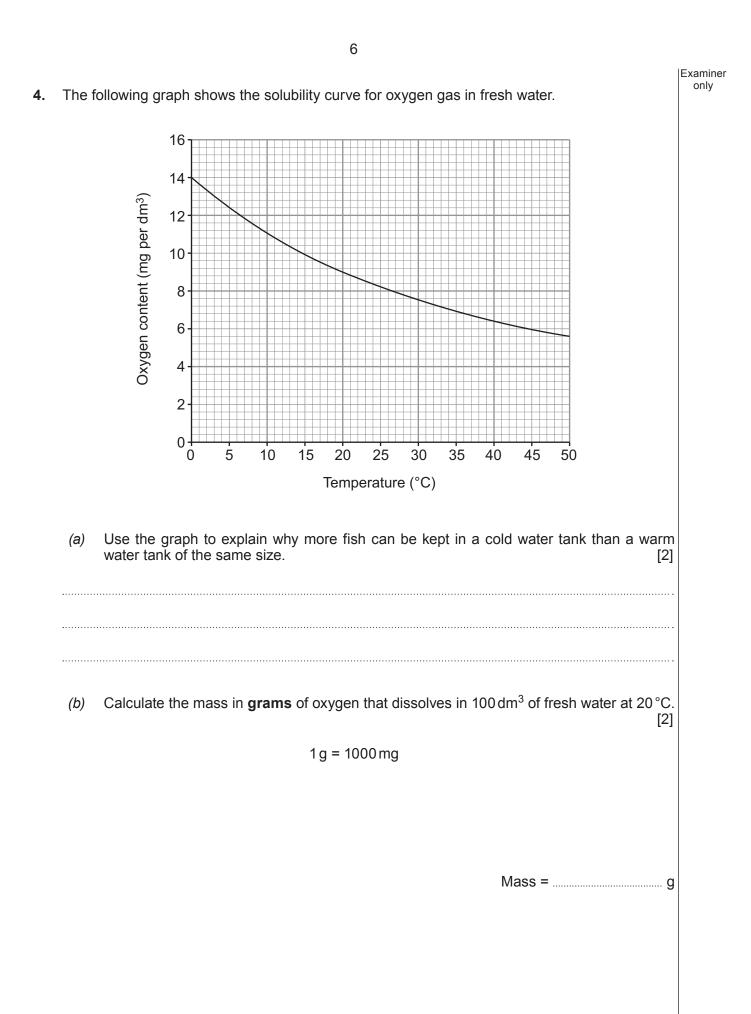
(*d*) Electrolysis can be used to extract aluminium from its oxide. The equation for the reaction is as follows.

 $2AI_2O_3 \longrightarrow 4AI + 3O_2$

204 tonnes of aluminium oxide are expected to produce 108 tonnes of aluminium. However, only 81 tonnes are actually made.

(i) Calculate the percentage yield of this process.

Percentage yield = % (ii) Suggest reasons why the actual amount produced was lower than expected. [2]


Examiner only

3. Describe what is meant by a *smart material*. Use thermochromic and photochromic materials to support your answer, giving everyday uses of each. [6 QWC]

4472 020005

6

(4472-02)

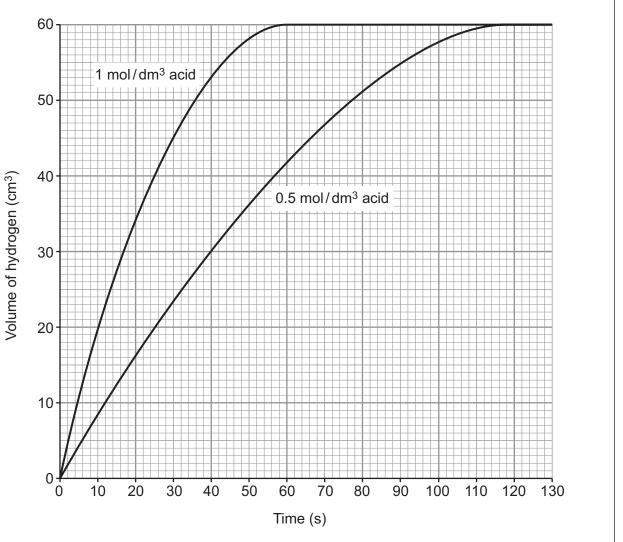
Approximately 3.3g of carbon dioxide gas dissolves in 1 dm^3 of fresh water at 0 °C. Estimate how many times more soluble carbon dioxide is than oxygen at this temperature. Show your working. [2]

7

(C)

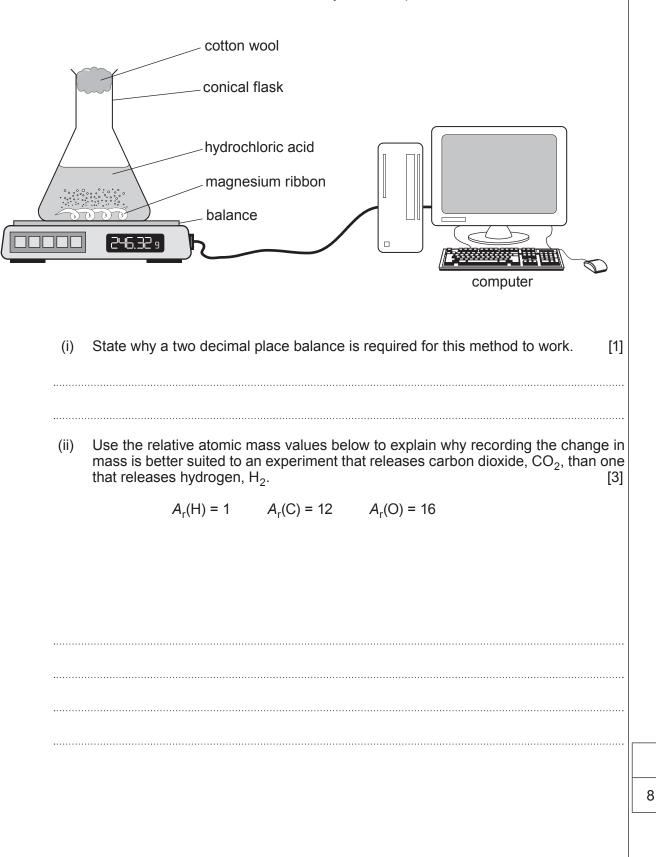
Carbon dioxide is approximately times more soluble than oxygen.

6


4472 020007

PMT

Examiner


5. The following graphs show the volume of hydrogen produced over time during the reaction between magnesium and hydrochloric acid of two different concentrations. All other factors were kept constant.

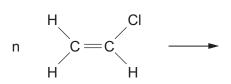
(a) State what conclusion can be drawn from the graph and use your understanding of particle theory to explain that conclusion. [4]

Examiner

(b) Another method of studying this reaction is to use a balance to record the change in mass over time. The data can be recorded directly on a computer.

(4472-02)

Examiner


[1]

[1]

- **6.** *(a)* Alkenes such as ethene are reactive hydrocarbons. They can be recognised by their reaction with bromine, Br₂.
 - (i) State what you would expect to see when bromine water is added to an alkene.
 Give the reason this happens. [2]
 - _____
 - (ii) Complete the equation by giving the structure of the product formed.

- (b) Monomers can undergo polymerisation to form polymers. One example is PVC.
 - (i) Complete the equation for the formation of PVC.

(ii) PVC is a thermoplastic. Describe the effect of heat on thermoplastics and explain in terms of their **structure** why they behave in this way. [3]

11

BLANK PAGE

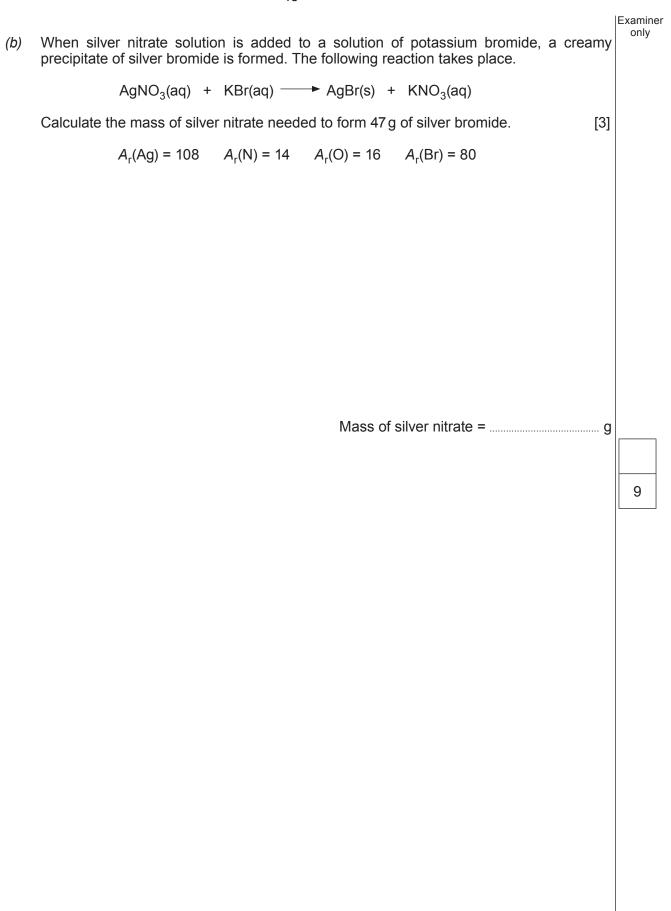
Turn over.

Examiner

7. (a) An experiment was carried out to determine the trend in reactivity of the halogens. The following table shows the results obtained when solutions of halogens were added to different halide solutions.

		Halide solution						
		potassium chloride	potassium bromide	potassium iodide				
Halogen added	bromine	no reaction	no reaction	turns brown				
	chlorine	no reaction	turns yellow orange	turns brown				
	iodine	no reaction	no reaction	no reaction				

(i) Use the results in the table to give the order of reactivity of the halogens. Explain your answer.


[3]

+

(ii) Write the balanced **symbol** equation for the reaction that takes place between chlorine and potassium iodide. [3]

▶

+

14	
Using water and carbon dioxide as examples, explain what is meant by covalent bonding and why some molecules contain double bonds. You may use diagrams as part of your answer. [6 QWC]	Examine only
······	

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS					
Name	Formula	Name	Formula				
Aluminium	Al ³⁺	Bromide	Br ⁻				
Ammonium	NH4 ⁺	Carbonate	CO3 ²⁻				
Barium	Ba ²⁺	Chloride	CI				
Calcium	Ca ²⁺	Fluoride	F [−]				
Copper(II)	Cu ²⁺	Hydroxide	OH-				
Hydrogen	H⁺	lodide	I_				
lron(ll)	Fe ²⁺	Nitrate	NO ₃ ⁻				
lron(III)	Fe ³⁺	Oxide	0 ²⁻				
Lithium	Li ⁺	Sulfate	SO4 ²⁻				
Magnesium	Mg ²⁺						
Nickel	Ni ²⁺						
Potassium	K ⁺						
Silver	Ag ⁺						
Sodium Na ⁺							
Zinc	Zn ²⁺						

PERIODIC TABLE OF ELEMENTS

	0	E	Ø		<u> </u>	ç	<u> </u>	E	Ð	Ľ	C.	Ę	
0	² ⁴ He	Helium	²⁰ Ne	Neon	⁴⁰ ₁₈ Ar	Argon	⁸⁴ Kr ³⁶ Kr	Krypton	¹³¹ Xe 54	Xenon	²²² Rn	Radon	
~			¹⁹ F 9	Fluorine	³⁵ CI	Chlorine	⁸⁰ Br	Bromine	127 53	lodine	²¹⁰ At 85	Astatine	
9			16 8	Oxygen	³² S 16	Sulfur	⁷⁹ / ₃₄ Se	Selenium	¹²⁸ Te	Tellurium	²¹⁰ PO	Polonium	
S			14 N 7	Nitrogen	³¹ P	Phosphorus	75 AS	Arsenic	¹²² Sb	Antimony	²⁰⁹ Bi	Bismuth	
4			12 C	Carbon	²⁸ Si	Silicon	⁷³ Ge	Germanium	¹¹⁹ Sn	Tin	²⁰⁷ Pb	Lead	
က			11 5 B	Boron	²⁷ AI	Aluminium	70 Ga	Gallium	¹¹⁵ In	Indium	²⁰⁴ TI 81	Thallium	
							65 Zn 30 Zn	Zinc	¹¹² Cd	Cadmium	²⁰¹ Hg	Mercury	
							64 Cu 29 Cu	Copper	¹⁰⁸ Ag	Silver	¹⁹⁷ Au	Gold	
							⁵⁹ Ni ²⁸ Ni	Nickel	¹⁰⁶ Pd	Palladium	¹⁹⁵ Pt	Platinum	
	H T	Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ Rh	Rhodium	192 r 77	Iridium	
roup							⁵⁶ Fe	Iron	¹⁰¹ Ru	Ruthenium	¹⁹⁰ OS	Osmium	
Gro							55 Mn 25 Mn	Manganese	⁹⁹ Tc	Technetium	¹⁸⁶ Re	Rhenium	
							52 Cr 24 Cr	Chromium	⁹⁶ Mo	Molybdenum	¹⁸⁴ W 74	Tungsten	
							51 V 23	Vanadium	⁹³ Nb	Niobium	¹⁸¹ Ta	Tantalum	
							⁴⁸ Ti 22	Titanium	⁹¹ Zr	Zirconium	¹⁷⁹ Hf	Hafnium	
							45 SC	Scandium	89 Y 39 Y	Yttrium	¹³⁹ La	Lanthanum	²²⁷ Ac
2			⁹ Be	Beryllium	²⁴ ₁₂ Mg	Magnesium	⁴⁰ Ca	Calcium	⁸⁸ 38 Sr	Strontium	¹³⁷ Ba	Barium	²²⁶ Ra
~			7 Li	Lithium	²³ Na	Sodium	³⁹ K	Potassium	⁸⁶ ₃₇ Rb	Rubidium	¹³³ CS	Caesium	²²³ Fr ⁸⁷
	© WJEC CBAC Ltd.												

16

PMT

- Element Symbol

*

<

Mass number

Key:

Francium Radium Actinium

→ Z Name

Atomic number –