

Mark Scheme (Results)

June 2016

Pearson Edexcel International GCSE Mathematics A (4MAO) Paper 4H

Pearson Edexcel Level 1/Level 2 Certificate Mathematics A (KMAO) Paper 4H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4MA0_4H_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths June 2016 – Paper 4H Mark scheme

Apart from Questions 2, 15(c), 19, 20 and 22(b) (where the mark scheme states otherwise), the correct answer, unless clearly obtained by

an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1		3n + 4	2	M1 For $an + 4$ where a is an integer and $a \ne 0$ or for $3n + b$ where b is an integer A1 Fully correct expression ScB1 for $n = 3n + 4$ ScB1 for $3t + 4$, etc.
				Total 2 marks

2	(8y-18 =) 3y + 9 8y-3y = 9 + 18 or 5y = 27 oe			M1 For correct expansion of bracket M1 For collecting terms in y on one side and constant terms on the other (as part of a correct equation)
		5.4 oe	3	A1 Eg $\frac{27}{5}$ or $5\frac{2}{5}$ Dep on at least M1 ScB1 for 8y - 18 = 3y + 3 AND $8y - 3y = 3 + 18$ or 8y - 18 = 3y + 3 AND $5y = 21$
	Alternative Method			0, 10 0, 0111.12 0, 21
	$\frac{8y-18}{3} = y+3 \text{ or } \frac{8y}{3} - \frac{18}{3} = y+3 \text{ oe}$			M1 For dividing both sides of the equation by 3 as part of a correct
	$\frac{8y}{3} - y = 3 + \frac{18}{3}$ or $5y = 27$ oe			equation M1 For collecting terms in <i>y</i> on one side and constant terms on the
		5.4 oe		other (as part of a correct equation) A1 $= \frac{27}{5} \text{ or } 5^{\frac{2}{3}}$
		3.100	3	A1 Eg $\frac{27}{5}$ or $5\frac{2}{5}$ Dep on at least M1
				Total 3 marks

3 (a)	$0.8 \times 485 \text{ or } 485 - 0.2 \times 485 \text{ or } 485 - \text{"97"} \text{ oe}$			M2	For a complete method If not M2 then: M1 for 0.2 × 485 or 97 oe
		388	3	A1	cao
(b)	$\frac{79}{0.2}$ or $\frac{79}{20} \times 100$ or 3.95×100 or 79×5 oe			M2	For a complete method If not M2 then: M1 For 20% = 79 or 0.2x = 79 or $\frac{79}{20}$ or 3.95 or $\frac{x}{79} = \frac{100}{20}$ oe
		395	3	A1	cao ScB2 for 316
					Total 6 marks

	()	I	- 62		D 1	
4	(a)		63	l	B1	
	(b)		50	1	B1	
	(c)	Eg $(6-2) \times 180$ or 4×180 or 720 oe			M1	For complete method to find the total of interior angles or 720
		Eg $3x + x + 164 + 139 + 97 + 156 = 720$ or $4x + 556 = 720$ oe or			M1	Dep For a correct equation using their
		$\frac{"720" - (164 + 139 + 97 + 156)}{4} \text{ or } \frac{"720" - 556}{4} \text{ or } \frac{164}{4} \text{ oe}$				720 or For a complete numerical method
			41		A1	
			71	3	711	
		Alternative Method Eg $180 - 156 + 180 - 139 + 180 - 164 + 180 - 97 + 180 - x + 180 - 3x = 360$ or $24 + 41 + 16 + 83 + 180 - x + 180 - 3x = 360$ or $1080 - 556 - 4x = 360$			M2	For an equation coming from the correct method relating to the sum of exterior angles.
			41	3	A1	
						Total 5 marks

5 (a)		m^7	1	B1
(b)		c^8	1	B1
(c)		a^{15}	1	B1
(d)	8x + 12 + 2x + 10	10x + 22	2	M1 Any three terms correct out of four.A1 Allow 2(5x + 11)Do not ISW
				Total 5 marks

6	Eg (3×4) + (9×6) + (15×8) + (21×9) + (27×3) or			M1 $f \times x$ for 4 products with x used
	12 + 54 + 120 + 189 + 81			consistently within interval
				(including end points) & intention
				to add.
				M1 (dep) for use of all correct half-
				way values
		456		A1 Do not ISW
			3	ScB2 for 15.2
				Total 3 marks

7	(a)		7, (2), -1, (-2), (-1), 2, 7		B2	B1 for at least 2 correct
				2		
	(b)	(-1, 7), (0, 2), (1, -1), (2, -2), (3, -1), (4, 2),	Correct curve		B2	For the correct smooth curve
		(5, 7)				through all 7 points $(\pm \frac{1}{2} \text{ sq})$
						B1 ft for at least 6 points from
						their table plotted correctly $(\pm \frac{1}{2})$
						sq) provided at least B1 scored
						in (a)
				2		
						Total 4 marks

8 (a)	Enlargement		B1	For Enlargement
	Scale factor 2		B1	For (Scale factor =) 2
	Centre (1, 0)		B1	For (Centre) (1, 0)
				NB if more than one
				transformation mentioned then no
		3		marks.
(b)	Correct triangle at			
	(10, -2), (7, -2), (7, -1)		B1	Correct triangle in correct place
		1		
(c)			M1	Triangle congruent to D and with
				correct orientation
	Correct triangle at		A1	
	(1, 0), (2, 0), (2, 3)			ScB1 for triangle with vertices at
		2		(4, 2), (5, 2) and (4, −1)
				Total 6 marks

9	$13.5^2 + 60^2$ or $182.25 + 3600$ or 3782.25 $\sqrt{"3782.25"}$ or 40.5 $13.5 + 60 + \sqrt{"3782.25"}$ or $13.5 + 60 + 61.5$	135	4	M1 M1 M1 A1	For squaring and adding (Dep) for square root Dep cao NB: A0 if 61.5 is rounded from an inexact value (eg 61.505)
	Alternative method – using Trigonometry Eg $A = 77.3(196)$ and $\sin"77.3" = \frac{60}{AC}$ $(AC =) \frac{60}{\sin"77.3"}$ or awrt 61.5			M1 M1	For finding a correct angle AND a correct trig statement (Dep) For an expression for <i>AC</i>
	$13.5 + 60 + \frac{60}{\sin^{"}77.3"}$ or $13.5 + 60 + 61.5$	135	4	M1 A1	Dep cao NB: A0 if 61.5 is rounded from an inexact value (eg 61.505)
					Total 4 marks

10	20 = 2, 2, 5 140 = 2, 2, 5, 7 420 = 2, 2, 3, 5, 7	60	2	M1	For identifying the prime factors for 2 of the 3 numbers 20,140,420 (can be implied by a factor tree, repeated division or Venn diagram) or For a complete Venn diagram for x and 140 with 20 in the intersection or $x = 20 \times 3$ or $20 \times 7 \times y = 420$ or $\frac{420}{20 \times 7}$ or At least the 1 st 3 multiples of 20 or $140x = 420 \times 20$ oe Allow $2 \times 2 \times 3 \times 5$
					Total 2 marks

11	(a)		97 000 000	1	B1	
	(b)		1.4×10^{8}	1	B1	Accept, for example, 1.40×10^8
	(c)	$1.4 \times 10^9 - 3.2 \times 10^8$ or			M1	For $1.4 \times 10^9 - 3.2 \times 10^8$ or
		1 400 000 000 – 320 000 000 or 1 080 000 000				digits 108
			1.08×10^9	2	A1	Accept 1.1×10^9
	(d)	$(1.3 \times 10^9) \div (1.2 \times 10^8)$ or			M1	Condone missing brackets
		1 300 000 000 ÷ 120 000 000 or 10.8(333)				
			11	2	A1	Accept 1.1×10^1
						Total 6 marks

12 (a)	Eg $\frac{13.5}{6}$ or $\frac{9}{4}$ or 2.25 or $\frac{6}{13.5}$ or $\frac{4}{9}$ or 0.444(444) or $(AB =) 11.7 \div \frac{9}{4}$ or $(AB =) 11.7 \times \frac{4}{9}$ or $(AB =) 6 \times \frac{11.7}{13.5}$ oe $\frac{AB}{11.7} = \frac{4}{9}$ or $\frac{AB}{6} = \frac{11.7}{13.5}$ oe			M1	For correct scale factor or correct equation involving <i>AB</i> or correct expression for <i>AB</i> Accept 0.444(444) rounded to at least 3SF
		5.2	2	A1	
(b)	Eg $(AD =) \frac{9}{4} \times 4$ or $(AD =) \frac{4}{"5.2"} \times 11.7$ or $(ED) = [\frac{9}{4} \times 4] - 4$ or $(ED) = \frac{4}{"5.2"} \times (11.7 - "5.2")$ or $\frac{AD}{4} = \frac{9}{4}$ or $\frac{AD}{11.7} = \frac{4}{"5.2"}$ or $ED + 4 = \frac{9}{4} \times 4$ or $\frac{ED}{11.7 - "5.2"} = \frac{4}{"5.2"}$ or $AD = 9$	5	2	M1	For a correct expression for <i>ED</i> or <i>AD</i> or For a correct equation involving <i>ED</i> or <i>AD</i>
					Total 4 marks

13 (a)	$M = k \times p^3$			M1 I	For $M = kp^3$ or $p^3 = \frac{M}{k}$ oe Do not allow $M = p^3$ oe
	$128 = k \times 8^3$	$M = 0.25p^3$		A1	For a correct substitution into a correct equation. Implies first M1. Award M2 if $k = 0.25$ stated unambiguously in (a) or (b). Award 3 marks if answer is
			3		$M = kp^3$ but k is evaluated in part (b)
(b)		31.25	1	•	for their value of k only for equations of the form $M = kp^3$ oe and if $k \neq 1$
					Total 4 marks

14	(x-5)(x+5)			M1	For $(x + 5)(x - 5)$
	(2x+1)(x-5)			M1(indep)	For $(2x+1)(x-5)$ or
					2(x+0.5)(x-5) or
					2(2x+1)(0.5x-2.5)
		$\underline{x+5}$		A1	cao
		2x + 1	3		No ISW
					Total 3 marks

F			1	1	
15 (a)	Eg $\frac{3(x+3)}{3\times5} + \frac{5(x-2)}{3\times5}$ or $\frac{3(x+3)+5(x-2)}{3\times5}$ oe			M1	For a common denominator as part
	$Eg = \frac{1}{3 \times 5} + \frac{1}{3 \times 5} = 0e$				of 1 or 2 fractions (must be a
					correct expression)
	-3x+9+5x-10 $3x+9$ $5x-10$			M1	For a correct expansion of brackets
	Eg $\frac{3x+9+5x-10}{3\times5}$ or $\frac{3x+9}{3\times5} + \frac{5x-10}{3\times5}$ oe			IVI I	-
	SAU SAU SAU				as part of 1 or 2 fractions (must be
					a correct expression)
		8x - 1		A1	cao
		15	3		Do not ISW
(b)				M1	For two of 2, a^3 , e^2 in a product
					with three terms
		2 3 3	2	A1	Do not ISW
		$2a^3e^2$			
(c)	Eg $\frac{16+9}{24}y$ (= 5) or $\frac{16}{24}y + \frac{9}{24}y$ (= 5) or $\frac{25}{24}y$ (= 5) or			M1	For simplifying the LHS or
	24 24 24 24 24				multiplying both sides by 24
	$y(\frac{2}{3} + \frac{3}{8})$ (= 5) or $y(0.\dot{6} + 0.375)$ (= 5) or 1.041 $\dot{6}y$ (= 5) or				,
	$24 \times \frac{2}{2}y + 24 \times \frac{3}{9}y = 24 \times 5$				
	$24 \times \frac{3}{3} + 24 \times \frac{8}{8} = 24 \times 3$				
	Eg $25y = 5 \times 24$ or $25y = 120$ or $y = 5 \div 1\frac{1}{24}$ or			N / 1	D 151 M1 ' 1
	24			M1	Dep on 1 st M1 gained
	$y = \frac{5}{1.0416}$ or $y = \frac{5}{\frac{2}{3} + \frac{3}{9}}$				For the removal of the
	1.0416				denominator(s) as part of a correct
					equation or for correctly isolating y
					1
		4.8		Aloe	Dep on 1 st M1 gained.
				11100	ScM2 for $16y + 9y = 120$
					The state of the s
					M0A0 for trial and improvement
					NB: Decimals must be exact to
					gain any credit:
			3		Eg Award M0 for $y(0.667 + 0.375)$
					Total 8 marks
	1	1	1	1	= 5 555= 0 11141 115

For $\frac{6}{20}$, $\frac{4}{20}$ correct on LH branches
For all other branches correct
1ft From their Tree diagram
1ft From their Tree diagram oe. $Eg \frac{3}{95}$ Accept 0.031(57) rounded or truncated to at least 3 decimal places.
1ft For one correct product from their Tree diagram
1ft For sum of all correct products from their Tree diagram For $\frac{9}{38}$ oe or 0.236(842) NB: Accept use of decimals if rounded or truncated to at least 3 decimal places.

$\frac{6}{20} \times \frac{6}{20} \text{ or } 0.0$	With Replacement 9 or $\frac{6}{20} \times \frac{4}{20}$ or 0.06 or $\frac{4}{20} \times \frac{4}{20}$ or 0.04			M1
$\frac{6}{20} \times \frac{6}{20} + \frac{6}{20} \times \frac{6}{20}$	$\frac{4}{20} + \frac{4}{20} \times \frac{6}{20} + \frac{4}{20} \times \frac{4}{20} \text{ or } \frac{100}{400} \text{ or } 0.25 \text{ oe}$			M1
	Alternative method $\frac{9}{19} + \frac{10}{20} \times \frac{6}{19} + \frac{10}{20} \times \frac{4}{19} + \frac{6}{20} \times \frac{10}{19} + \frac{4}{20} \times \frac{10}{19}$	90 380 oe	3	M2 For a complete method. Ft from their Tree diagram A1 For $\frac{9}{38}$ oe or 0.236(842) NB: Accept use of decimals if rounded or truncated to at least 3 decimal places.
				Total 7 marks

17 (a)		3	1	B1	
(b)				M1	For $2((-4)^2 - 10) - 5$ oe or $(-4)^2 - 10$ or 6
		7	2	A1	,
(c)	$2x = y + 5 \text{ or } 2y = x + 5 \text{ or } \frac{1}{2}(y + 5)$			M1	
		$\frac{1}{2}(x+5)$	2	A1	oe
(d)	$(2x-5)^2 - 10 = -1$ or $4x^2 - 10x - 10x + 25 - 10 = -1$			M1	For a correct expression for $gf(x)$
	$4x^{2} - 20x + 16 (= 0) \text{ or}$ $2x^{2} - 10x + 8 (= 0) \text{ or}$ $x^{2} - 5x + 4 (= 0) \text{ or}$ $(2x - 5)^{2} = 9$			M1	For a correct 3 part quadratic or For $(2x-5)^2 = 9$
	$(4x-4)(x-4) (= 0) \text{ or}$ $(2x-2)(x-4) (= 0) \text{ or}$ $(x-4)(x-1) (= 0) \text{ or}$ $2x-5 = \pm 3$ $\frac{5\pm\sqrt{(-5)^2-4(1)(4)}}{2(1)} \text{ (may be partially evaluated;}$ condone lack of brackets around negative numbers)			M1	For factorising a correct equation or for use of quadratic formula with a correct equation or For $2x - 5 = \pm 3$
	condone tack of brackets around negative numbers)	x = 1, x = 4	4	A1	

Alternative method				
Eg $a^2 - 10 = -1$ oe			M1	For a correct equation relating to
				g(a) = -1
$a^2 = 9$			M1	For $a^2 = 9$
$2x - 5 = \pm 3$			M1	For $2x - 5 = \pm 3$
	x = 1, x = 4	4	A1	
				Total 9 marks

18 (a)	2+4+9			M1	For $\frac{9}{15}$ or 0.6 or $0.2 \times 10 + 0.8 \times 5$ or $2 + 4$ or 6 For at least 1 correct frequency density on scale without incorrect values (1cm = 0.1 fd) or For 1 cm square = 0.5 person oe stated
		15	2	A1	
(b)		Correct bar drawn	2	M1 A1	$\frac{12}{25}$ or 0.48 or $\frac{24}{5}$ or 4.8 or a bar drawn with the correct height 4.8 cm high
					Total 4 marks

19	Eg $7 \times 5 - 7 \times 2 \times \sqrt{2} + 5 \times 2 \times \sqrt{50} - 2 \times 2 \times \sqrt{50} \times \sqrt{2}$ or $35 - 14\sqrt{2} + 10\sqrt{50} - 4\sqrt{100}$ or			M1	For brackets expanded correctly (need not be simplified)
	$35 - 14\sqrt{2} + 10\sqrt{50} - 40 \text{ or } 35 - 14\sqrt{2} + 50\sqrt{2} - 20 \times 2$			M1	a = -5 or $b = 12Dep on scoring the first M1$
		$-5 + 12\sqrt{18}$	3	A1	Dep on M1
					Total 3 marks

20	$\pi \times 20 \times 10 \text{ or } 200\pi \text{ or } 628.(318) \text{ oe}$			M1	For the curved surface area of the cylinder
	$\sqrt{10^2 + 10^2}$ or $10\sqrt{2}$ or $14.1(421)$ oe			M1	For the slant height of the cone
	$\pi \times 10 \times 10\sqrt{2}$ or $100\pi\sqrt{2}$ or 444.(288) or 141.(421) π oe			M1dep	For the curved surface area of the cone
	$Eg 100\pi + 200\pi + \pi \times 10 \times 10\sqrt{2}$	Correct solution	4	A1	cso For a correct exact expression for the total surface area that will lead to $(300 + 100\sqrt{2})\pi$ Dep on M3
					Total 4 marks

21 (a)	D 4 4 6 L T 3 2	3	M1 M1 A1	For 5 in the middle and 1 from $4(D \cap L \cap T')$ or $2(L \cap T \cap D')$ or $6(D \cap T \cap L')$ For any 4 correct entries For all correct including 2 outside the circles inside the rectangle
(b)	5 9	1	B1	ft from incorrect diagram
				Total 4 marks

22 (a) (i		2 q – 4 p oe	1	B1	Eg 2(q – 2 p)
(ii		$\mathbf{q} - \frac{1}{2}\mathbf{p}$ oe		B1	Eg $0.5(-p+2q)$
		· 2 ·	1		
(b)	Eg $(\overrightarrow{QR} =)$ -q + p + q - $\frac{1}{2}$ p or $\frac{1}{2}$ p oe			M1	For $(\overrightarrow{QR}) = \frac{1}{2} \mathbf{p}$ or
					For $(\overrightarrow{QR}) = -\mathbf{q} + \mathbf{p} + \text{"their a(ii)"}$
					or $(\overrightarrow{QR}) = \mathbf{q}$ - "their a(ii)"
	Eg $(\overrightarrow{QR} =) \frac{1}{2}$ p and $\overrightarrow{QR} = 0.5\overrightarrow{OP}$ or	Shown		A1	For $(\overrightarrow{QR}) = \frac{1}{2}\mathbf{p}$ and a valid
	$(\overrightarrow{QR} =) \frac{1}{2}\mathbf{p} \text{ and } \overrightarrow{OP} = 2\overrightarrow{QR}$	Shown		AI	conclusion such as:
	$(QK -) \frac{1}{2} \mathbf{p}$ and $OI - 2QK$				
					$\overrightarrow{QR} = 0.5\overrightarrow{OP} \text{ or } \overrightarrow{OP} = 2\overrightarrow{QR} \text{ or }$
					p is a multiple of $\frac{1}{2}$ p or
					They have the same direction but
					<i>OP</i> is twice as long or
					They have the same vector
			2		component.
					Total 4 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom