Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

124			
A	0	A	
14		17	
	UK		

General Certificate of Secondary Education Higher Tier June 2014

CH2HP

Additional Science Unit Chemistry C2

ChemistryUnit Chemistry C2

Thursday 15 May 2014 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

You may use a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 2 should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use						
Examiner's Initials						
Question	Mark					
1						
2						
3						
4						
5						
6						
7						
TOTAL						

	Answer al	I questions	in the s	paces i	provided
--	-----------	-------------	----------	---------	----------

The label shows the ingredients in a drink called Cola. 1

Cola

Ingredients:

Carbonated water

Sugar Colouring Phosphoric acid

Flavouring

Caffeine

1 (a) (i)	The pH of carbonated water is 4.5.	
	The pH of Cola is 2.9.	
	Name the ingredient on the label that lowers the pH of Cola to 2.9.	[1 mark]
1 (a) (ii)	Which ion causes the pH to be 2.9?	[1 mark]

1 (b) A student investigated the food colouring in Cola and in a fruit drink using paper chromatography.

The chromatogram in **Figure 1** shows the student's results.

Figure 1

1 (b) (i) Complete the sentence.

	The start line should be drawn with a ruler and	
	Give a reason for your answer.	[2 marks]
		[=
4 (1) (1)		
1 (b) (II)	Suggest three conclusions you can make from the student's results.	[3 marks]

1 (c)		e can be separated from the other compounds comatography.	in the drink by					
	Why do different compounds separate in a gas chromatography column? [1 mark]							
4 / J\	0-4-:-							
1 (d)		e is a stimulant.						
	Large a	amounts of caffeine can be harmful.						
1 (d) (i)	Only or	ne of the questions in the table can be answere	d by science a	alone.				
	Tick (✓	one question.						
				[1 mark]				
		Question	Tick (√)					
		Should caffeine be an ingredient in drinks?						
		Is there caffeine in a certain brand of drink?						
		How much caffeine should people drink?						
1 (d) (ii)		vo reasons why the other questions cannot be		[2 marks]				
	Reason 2							

5

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Explain why chlorine $({\rm Cl_2})$ is a gas at room temperature, but sodium chloride (NaCl) is a solid at room temperature.

Chlorine

Sodium chloride

CI — CI

your answer.
[6 marks]
Extra space

Figure 2 represents a reaction in the production of sulfuric acid.

3 (a) Complete and balance the equation for the reaction.

[2 marks]

[3 marks]

- **3 (b)** The conditions can affect the rate of the reaction.
- **3 (b) (i)** The pressure of the reacting gases was increased.

State the effect of increasing the pressure on the rate of reaction.

Explain your answer in terms of particles.

3 (b) (ii) A catalyst is used for the reaction.

The gases pass through a layer containing pieces of the catalyst.

Figure 3 shows the shapes of pieces of catalyst.

Figure 3

	Suggest and explain why shape B is more effective as a catalyst than shape A .	2 marks]
3 (c)	The reaction is carried out at a high temperature to provide the reactants with the activation energy.	ne
	What is meant by the activation energy?	[1 mark]

3 (d)	Sulfuric acid reacts with metals to produce salts.
3 (d) (i)	A student concluded that potassium would not be a suitable metal to react with sulfuric acid.
	Explain why. [2 marks]
3 (d) (ii)	A student reacted zinc metal with sulfuric acid to produce a salt and another product.
	Complete the equation for this reaction. [2 marks]
	Zn + H ₂ SO ₄
3 (d) (iii)	The student wanted to increase the rate of the reaction between the zinc and sulfuric acid.
	State one way, other than using a catalyst, that the student could increase the rate of the reaction.
	the reaction. [1 mark]

13

4 This question is about zinc and magnesium.

Zinc is produced by electrolysis of molten zinc chloride, as shown in Figure 4.

Figure 4

4 (a) (i)	Why must the zinc chloride be molten for electrolysis?	[1 mark]
4 (a) (ii)	Describe what happens at the negative electrode.	[3 marks]
4 (a) (iii)	Complete the half equation for the reaction at the positive electrode.	[1 mark]
	e ⁻	

	The constitution for the proofing in
	The equation for the reaction is:
	$Si(s) + 2 MgO(s) \Longrightarrow SiO_2(s) + 2 Mg(g)$
4 (b) (i)	How can you tell from the equation that the reaction is done at a high temperature? [1 mark]
4 (b) (ii)	This reaction to produce magnesium from magnesium oxide is endothermic .
	What is meant by an endothermic reaction? [1 mark]
4 (b) (iii)	A company made magnesium using this reaction.
	Calculate the mass of magnesium oxide needed to produce 1.2 tonnes of magnesium.
	Relative atomic masses (A_r): O = 16; Mg = 24
	[3 marks]
	Mass of magnesium oxide needed = tonnes

b) (iv) The company 0.9 tonnes was	calculated that they would produce 1.2 tonnes of magnesium, but only produced.
Calculate the p	ercentage yield. [1 mark]
	Percentage yield = %
b) (v) Give one reas	on why the calculated yield of magnesium might not be obtained. [1 mark]

Turn over for the next question

12 Do not write outside the box

5 Carbon atoms are used to make nanotubes.

Carbon atoms in a nanotube are bonded like a single layer of graphite.

Figure 5 shows the structure of a single layer of graphite.

Figure 5

5 (a)	Suggest why carbon nanotubes are used as lubricants.	[2 marks]
5 (b)	Explain why graphite can conduct electricity.	[2 marks]

Turn over for the next question

6 Magnesium oxide nanoparticles can kill bacteria.

Figure 6 shows the percentage of bacteria killed by different sized nanoparticles.

Figure 6

6 (a) (i)	Give two conclusions that can be made from Figure 6 . [2 marks]
• () (II)	
6 (a) (ii)	Points are plotted for only some sizes of nanoparticles.
	Would collecting and plotting data for more sizes of nanoparticles improve the conclusions?
	Give a reason for your answer. [1 mark]

6 (b)	Magnesium oxide contains magnesium ions (Mg ²⁺) and oxide ions (O ²⁻).
	Describe, as fully as you can, what happens when magnesium atoms react with oxygen atoms to produce magnesium oxide.
	[4 marks]

Turn over for the next question

7 Glass is made from silicon dioxide.

7 (a) Silicon dioxide has a very high melting point.

Other substances are added to silicon dioxide to make glass. Glass melts at a lower temperature than silicon dioxide.

	Suggest why.	[1 mark]
7 (b)	Sodium oxide is one of the substances added to silicon dioxide to make glass.	
7 (b) (i)	Sodium oxide contains Na ⁺ ions and O ²⁻ ions.	
	Give the formula of sodium oxide.	[1 mark]

7 (b) (ii)	Sodium oxide is made by heating sodium metal in oxygen gas.
	Complete the diagram to show the outer electrons in an oxygen molecule (O ₂). [2 marks]
7 (c)	Glass can be coloured using tiny particles of gold. Gold is a metal.
	Describe the structure of a metal. [3 marks]

7

END OF QUESTIONS

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

20 Do not write outside the box

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Acknowledgement of copyright-holders and publishers Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified.

Question 5: Carbon nanotube diagram © Thinkstock

Question 5: Figure 5 © Thinkstock

Question 7: Photograph © Thinkstock

Copyright © 2014 AQA and its licensors. All rights reserved.

