SurnameCentre
NumberCandidate
NumberOther Names0

GCSE

4472/02

ADDITIONAL SCIENCE/CHEMISTRY

CHEMISTRY 2 HIGHER TIER

A.M. THURSDAY, 15 May 2014

1 hour

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	5				
2.	6				
3.	7				
4.	6				
5.	4				
6.	4				
7.	7				
8.	5				
9.	5				
10.	5				
11.	6				
Total	60				

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answers to questions **4** and **11**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

PMT

		2			
		Answer all questions.	Examine only		
1.	(a)	The following processes are used in the treatment of our water supply.			
		sedimentation filtration chlorination			
		State the purpose of each process. [3]			
		Sedimentation			
	Filtration				
		Chlorination			
	(b)	Drinking water can be obtained by desalination.			
	State what is meant by <i>desalination</i> and name a process by which it can be carried out [/				

Examiner only

- 2. Potassium reacts vigorously with water.
 - (i) Describe what you would observe when potassium reacts with water. [3]
 (ii) During a class demonstration the potassium exploded. Suggest what might have caused this to happen. [1]
 (b) Complete and balance the symbol equation for the reaction between potassium and water. [2]

Examiner only

3. The table below shows the amount of soap solution required by different samples of water to form a permanent lather. In each case 25 cm³ of the water samples were used and the soap solution was added 1 cm³ at a time.

		Volume of s	soap solution a	idded (cm ³)	
Sample	Test 1	Test 2	Test 3	Test 4	Mean
distilled water	2	2	2	2	2
Α	8	8	9	7	8
В	11	18	12	13	
С	15	14	14	13	14
A after boiling	8	7	9	8	8
B after boiling	6	5	6	7	6
C after boiling	2	2	2	2	2

(a) Two pupils, David and Haf, calculated the mean value for sample B. David calculated a value of 13.5 and Haf calculated a value of 12. Show how both values were obtained. State which is the better value to use and give a reason for your choice.
 [3]

(b) State which of water samples **A**, **B** and **C** is the **least** hard.

[1]

Water sample	
--------------	--

(c) State which of water samples **A**, **B** and **C** contains **both** temporary and permanent hardness. Give the reason for you answer. [2]

Water sample

Reason

(*d*) Name an ion which causes hardness in water.

[1]

Examiner only

4. An atom of element E is represented as follows.

State and explain what information this gives you about element E.

You may wish to refer to the key on the Periodic Table to help you answer this question. [6 QWC]

6

(4472-02)

 Explain why an explosion is more likely to occur with coal dust than with lumps of coal. [2] (b) A chemical reaction goes twice as fast if the temperature is increased by 10 °C. At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days. Calculate how long it will take milk to go sour at 35 °C. [2] 	. (a) One of the main dangers in the coal mining industry is that coal dust can form an explosive mixture with air.	Examiner only
 (b) A chemical reaction goes twice as fast if the temperature is increased by 10 °C. At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days. Calculate how long it will take milk to go sour at 35 °C. 		Explain why an explosion is more likely to occur with coal dust than with lumps of coal. [2]	
 (b) A chemical reaction goes twice as fast if the temperature is increased by 10 °C. At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days. Calculate how long it will take milk to go sour at 35 °C. 			
 (b) A chemical reaction goes twice as fast if the temperature is increased by 10 °C. At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days. Calculate how long it will take milk to go sour at 35 °C. [2] 	•••••		
At 5°C, milk undergoes a chemical reaction that makes it go sour in 8 days. Calculate how long it will take milk to go sour at 35°C. [2]	(b) A chemical reaction goes twice as fast if the temperature is increased by 10 °C.	
Calculate how long it will take milk to go sour at 35 °C. [2]		At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days.	
		Calculate how long it will take milk to go sour at 35 °C. [2]	
	.		
	•••••		

6

4472 020007

BLANK PAGE

Examiner

6. *(a)* 'Hot cans' are designed to heat the food inside them when it is to be eaten. The heat is generated by mixing calcium oxide with water.

Source: Amazon

The following diagram shows the cross-section of a 'hot can'.

During a trial reaction, the temperature reached 50 $^{\circ}$ C but a temperature of 70 $^{\circ}$ C is required to properly heat the food.

Suggest a change that could have been made and explain how this would lead to the can reaching the higher temperature. [2]

© WJEC CBAC Ltd. (4472-02)

	9	
(b)	When chemical reactions take place bonds are broken and new bonds are formed.	Examiner only
	Explain, in terms of bond making and breaking, why some reactions are exothermic . [2]	
•••••		
·····		
•••••		

			10		
(a)	Sodi	um reacts with oxygen to give so	odium oxide.		E
(0)	(i)	Using the electronic structures transfer of electrons and the for	s below, draw dot and cross o rmation of ions that occur as so	diagrams to show the odium oxide is formed. [3]	
		sodium 2,8,1	oxygen 2,6		
	(ii)	Give the electronic structure	of the sodium and oxide ions .	[1]	
			Electronic structure		
		sodium ion			
		oxide ion			
(b)	Nam Iow r	e the type of structure present melting point.	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]	
•••••					

		11	
8.	(a)	When bromine is passed over heated iron wool it glows and forms iron(III) bromide.	Examine only
		Write a balanced symbol equation for the reaction.	3]
	(b)	Name the substance used to test for the presence of bromide ions in iron(III) bromic solution and give the expected result.	de 2]

Examiner only

(a) The table below shows the names, molecular formulae and the structural formulae of the first two members of the alkene series. Complete the table by giving the structural formula of butene, C₄H₈.

Name	Molecular formula	Structural formula
ethene	C ₂ H ₄	H H C==C H H
propene	C ₃ H ₆	H H H—C—C==C H H H
butene	C ₄ H ₈	

(b) Explain how polypropene is formed from propene.

[4]

Examiner only

10. Many metal ores contain sulfides. Chalcocite is an important copper ore which contains copper(I) sulfide, Cu_2S .

ne	equation for the reaction that takes place is as follows.
	$Cu_2S + O_2 \longrightarrow 2Cu + SO_2$
(a)	Use the above equation to calculate the mass of copper produced on reacting 20.5 tonnes of copper(I) sulfide with an excess of oxygen. [3]
	$A_{\rm r}({\rm Cu}) = 64$ $A_{\rm r}({\rm S}) = 32$
	Mass of copper = tonnes
(b)	When the extraction was carried out with 20.5 tonnes of chalcocite only 12.3 tonnes of copper was formed.
	Calculate the percentage of impurity present in the ore. [2]
	Calculate the percentage of impurity present in the ore. [2]
	Calculate the percentage of impurity present in the ore. [2]
	Calculate the percentage of impurity present in the ore. [2]
	Calculate the percentage of impurity present in the ore. [2] Percentage of impurity =
	Calculate the percentage of impurity present in the ore. [2] Percentage of impurity =
	Calculate the percentage of impurity present in the ore. [2] Percentage of impurity =
	Calculate the percentage of impurity present in the ore. [2] Percentage of impurity =

11.	Describe how reactions involving chlorine, bromine and iodine can be used to show the trend in reactivity in Group 7 elements. [6 QWC]	Examiner only
	You should include equations in your answer.	

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIV	EIONS	NEGATI	NEGATIVE IONS		
Name	Formula	Name	Formula		
Aluminium	Al ³⁺	Bromide	Br ⁻		
Ammonium	NH4 ⁺	Carbonate	CO ₃ ²⁻		
Barium	Ba ²⁺	Chloride	CI		
Calcium	Ca ²⁺	Fluoride	F⁻		
Copper(II)	Cu ²⁺	Hydroxide	OH⁻		
Hydrogen	H⁺	lodide	F		
lron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻		
lron(III)	Fe ³⁺	Oxide	0 ²⁻		
Lithium	Li ⁺	Sulfate	SO4 ²⁻		
Magnesium	Mg ²⁺		-		
Nickel	Ni ²⁺				
Potassium	K ⁺				
Silver	Ag ⁺				
Sodium	Na ⁺				
Zinc	Zn ²⁺				

PERIODIC TABLE OF ELEMENTS

0	² ⁴ He	Helium	²⁰ Ne	Neon	⁴⁰ ₁₈ Ar	Argon	⁸⁴ Kr ³⁶ Kr	Krypton	¹³¹ Xe	Xenon	²²² Rn 86	Radon			
~			9 9 H	Fluorine	35 CI	Chlorine	⁸⁰ Br	Bromine	127 53	lodine	²¹⁰ At 85 At	Astatine			
9			16 O 8	Oxygen	³² S 16	Sulfur	⁷⁹ / ₃₄ Se	Selenium	¹²⁸ Te	Tellurium	²¹⁰ PO	Polonium			
5			14 N	Nitrogen	³¹ P	Phosphorus	75 AS	Arsenic	¹²² 51 51	Antimony	²⁰⁹ Bi	Bismuth			
4			12 C	Carbon	²⁸ Si	Silicon	⁷³ Ge	Germanium	¹¹⁹ Sn	Tin	²⁰⁷ Pb	Lead			
ი			11 5 B	Boron	²⁷ AI	Aluminium	70 Ga	Gallium	115 In 49	Indium	204 TI 81	Thallium			lod
							⁶⁵ Zn	Zinc	¹¹² Cd	Cadmium	²⁰¹ Hg	Mercury			ent Sym
							64 Cu 29 Cu	Copper	¹⁰⁸ Ag	Silver	¹⁹⁷ Au	Gold			- Eleme
dno			1				59 Ni 28 Ni	Nickel	¹⁰⁶ Pd	Palladium	¹⁹⁵ Pt	Platinum			×
	H	Hydrogen					⁵⁹ CO	Cobalt	¹⁰³ Rh	Rhodium	192 Ir 77	Iridium			
							⁵⁶ Fe	Iron	101 Ru 44 Ru	Ruthenium	¹⁹⁰ OS	Osmium			L D
Gro							55 Mn 25	Manganese	⁹⁹ Tc	Technetium	¹⁸⁶ Re	Rhenium		Key:	s numbo
							52 Cr 24 Cr	Chromium	⁹⁶ Mo	Molybdenum	184 W 74	Tungsten			Mas
							51 V 23	Vanadium	⁹³ Nb ⁴¹ Nb	Niobium	¹⁸¹ Ta	Tantalum			
							⁴⁸ Ti ²²	Titanium	⁹¹ ₄₀ Zr	Zirconium	¹⁷⁹ Hf	Hafnium			
							45 SC	Scandium	⁸⁹ ⊀	Yttrium	¹³⁹ La	Lanthanum	²²⁷ AC	Actinium	
2			⁹ Be	Beryllium	²⁴ Mg	Magnesium	⁴⁰ Ca	Calcium	⁸⁸ ³⁸ Sr	Strontium	¹³⁷ Ba	Barium	²²⁶ Ra	Radium	
~			⁷ Li	Lithium	²³ Na	Sodium	³⁹ K	Potassium	⁸⁶ Rb	Rubidium	¹³³ CS	Caesium	²²³ Fr 87	Francium	

© WJEC CBAC Ltd.

PMT

Z Name

Atomic number