June 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02
MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	2

	stion nber	Mark Scheme		Notes
1		3h 20m	1	
2		10.9	1	
3		$0.5^3 < 0.5^2 < \sqrt{0.5}$	2*	M1 for 0.25, 0.7 and 0.125 seen matched
4		$\frac{1}{2}p^{20}$	2	B1 $\frac{1}{2}$ or p^{20}
5 6		24 6375 6385	2* 1, 1	M1 $x/4 = 6$ or $x - 32 = -8$ seen B1 correct but reversed
7		7	2*	B1 for one of -7/8, -1/8, -14/16, -2/16, -0.875, -0.125
8	(a)	4	1	
	(b)	4	1	Not 90 or $\frac{1}{4}$ turn
9		450	2*	M1 for 3000 x 7.5 x 2/100
10	(a) (b)	80000 8 x 10 ⁴	1 1 √ 3*	8 x 10 ⁴
11		x = 8 y = 1	3*	M1 double and add/subtract consistently A1 A1 or M1 rearrange and substitute correctly
12		50, 5, 3	1, 1, 1	
13		$\sqrt{\left(\frac{c-\theta}{k}\right)}$	3*	R1 , R1 for any 2 correct steps moving e , k or $$ Allow $d^2 = (c - e)/k$ to score R2 as a single step
14	(a)		1	Arc must not continue outside rectangle. Radius of arc 4 cm \pm 1 mm. Ignore shading
	(b)	12.6	2*	M1 for $\frac{1}{4} \times \pi \times 4^2$
15		4	3*	M1 Area factor or ratio 9 M1 LSF 3
16		a + c a – c or –c + a	1 1	
	(c)	$-\frac{1}{2}a - \frac{1}{2}c \text{ or } -\frac{1}{2}(a+c)$	2*	M1 A0 for answers simplifying to these seen
17		177	2* 2*	M1 2 arcs centre B and D, line drawn A1 M1 construction arcs on AD and CD and centre
			1	these for the bisector, line drawn A1 Dependent on at least 1 + 1 in part (a) SC1, SC1 If accurate and no construction arcs
18	(a)	114	2*	$M1 78^2 + 83^2$
	(b)	(0)47 cao	3*	M1 for finding one angle by trigonometry
				correctly M1 for clearly identifying bearing angle Scale drawing and answers with no working score zero
19	(a)	11	1	333.3 2313
-	(b)	x + 2	2*	M1 $\frac{2(x+1)}{2}+1$
	(c)	3	2*	M1 for explicit $g(1)$ or $g^{-1}(x) = \frac{x-1}{2}$
20	(a)	3(2x - y)(2x + y)	2	B1 $(6x - 3y)(2x + y)$ o.e.
	(b)	$3(2x - y)(2x + y)$ (i) $x^2 - 6x + 9$	2*	M1 correct method
	. ,	(ii) $p = 3$ $q = 1$	2	B1, B1

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – JUNE 2004	0580/0581	2

				T
21	(a)	1.8	2	M1 convincing gradient calculation or use of
				a = (v - u)/t
	(b)	450	2*	M1 for 20 x 18 + $\frac{1}{2}$ x 10 x 18
	(c)	13	3*	M1 for finding total area under graph
	` '			((b) + 135) dep M1 for ÷ 45
				((2) 100) 400 1111 101 1 10
				If the vertical eagle is consistently
				If the vertical scale is consistently
				misread then M4 A0 is available
22	(a)	BA or (iii)	2*	M1 checking order of all 4 matrices correctly
		(38 0)		
	(b)	0 38	2	M1 either column or row correct
		/		
	(c)	1 (4 6) (4/38 6/38)	1	$(2/19 \ 3/19)$ $(0.105 \ 0.158)$
		$\left \frac{38}{38} \right _{5} = 2^{101} \left \frac{5}{38} = \frac{2}{38} \right $		$\begin{pmatrix} 2/19 & 3/19 \\ 5/38 & -1/19 \end{pmatrix}$ or $\begin{pmatrix} 0.105 & 0.158 \\ 0.132 & -0.0526 \end{pmatrix}$
				(3,333) (3.132 31323)
		TOTAL	70	