Chemistry 2 – Common questions

-	stion nber							
FT	HT	Sub-	section	on Ma	rk Answer	Accept	Neutral answer	Do not accept
7	1	(a)		3	mass number 7 (1) atomic number 6 (1) number of neutrons 12 (1)			
		(b)	(i)	1	2,8			
			(ii)	2	two shells (containing electrons)			
					outer shell is full / can't accept any more electrons		8 in outer shell	
		(c)		2	B and C (1)			
					same number of protons but different numbers of neutrons / same atomic number but different mass number (1)		reference to electrons	
					[marks linked i.e. second mark cannot be awarded if first is not given]			

	stion nber									
FT	HT	Sub-	sect	ion	Mark	Answer		Accept	Neutral answer	Do not accept
8	2	(a)			2	graphite and nanotube	(1)			·
						both have free moving / delocalised electrons	(1)	mark independently		
		(b)			2	graphite (1)				
						weak bonds between layers / layers able to slide over each other (1)				
						[marks linked i.e. second mark cannot be awarded if first is not given]				

	stion nber								
FT	HT	Sub-	secti	on	Mark	Answer	Accept	Neutral answer	Do not accept
9	3	(a)			1	chlorine gas is toxic / poisonous		harmful / dangerous / kills any reference to FeCl ₃	
		(b)			2	Fe + Cl ₂ (1) balancing 2,3,2 (1) [balancing mark only awarded if correct formulae included]			
		(c)			3	$M_{\rm r}({\rm FeCl_3}) = 162.5 [{\rm or} \ 3 \times A_{\rm r}({\rm CI}) = 106.5] (1)$ $106.5 / 162.5 \times 100 (1)$ $65.5\% (1)$ ${\rm cao} - 3 \ {\rm marks}$	allow 66		

	stion		
FT	nber HT	Mark	Answer
10	4	6 QWC	Indicative content

Chemistry 2 – Higher Tier only questions

-	stion nber							
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)	(i)	2	manganese dioxide is most effective / little effect with zinc oxide (1)			reference to one oxide being more
					full description of correct order of effect (2)			' reactive ' than another
					more oxygen produced as time progresses / reaction slows down as time goes on (1)			
					(2 max)			
			(ii)	2	same concentration of hydrogen peroxide		same amount of hydrogen	
					same volume of hydrogen peroxide		peroxide	
					same mass/amount of metal oxide		ignore time	
					same temperature / specified temperature	room temperature		
					same particle size for each oxide any 3 for 2 marks; any 2 for 1 mark			
		(b)		2	two linked points required for 2 marks e.g.	other relevant linked points		
					allows lower temperature to be used (1) which saves energy / improves efficiency / reduces costs (1)	,		
					more product in the same time (1) which increases profitability / makes it more economical (1)			

Question				
Nun	nber			
7	-			

Nur	nber							
FT	HT	Sub-se	ction	Mark	Answer	Accept	Neutral answer	Do not accept
	6	(a)		1	lithium 2,1 chlorine 2,8,7 - both needed for 1 mark			
		(b)		3	lithium loses 1 electron (1) chlorine gains 1 electron (1) forms Na ⁺ and Cl ⁻ (1) diagram clearly shows transfer with no ambiguity e.g. electron(s) not in two places at the same time			
		(c)		2	sharing 2 pairs of electrons (1) full octet around both oxygen (1)			
		(d)		3	lithium chloride is ionic and oxygen is covalent (1) strong bonds between <u>ions</u> in lithium chloride result in high melting point (1) weak bonds between <u>molecules</u> in oxygen result in low boiling point (1)	(1) only if 'particles' used instead of 'ions' and 'molecules'		

-	estion mber							
FT	HT	Sub	Sub-section Mark		Answer	Accept	Neutral answer	Do not accept
	7	(a)		3	A – potassium chloride(1)B – sodium iodide(1)C – lithium bromide(1)	KCI NaI LiBr	ions identified	
		(b)	(i)	1	chlorine is more reactive than bromine and displaces it from its halide			
			(ii)	3	reactants $KBr + Cl_2$ (1) products $KCl + Br_2$ (1) balancing 2,1,2,1 (1) [balancing mark only awarded if correct formulae included]			

	stion nber							
FT	HT	Sub	-secti	on Mark	Answer	Accept	Neutral answer	Do not accept
	8	(a)	(i)	1	H H			
			(ii)	1	(bromine) turns colourless	decolourises	colour change 'goes clear'	
		(b)		2	Reaction A addition (1)	hydrogenation / reduction		additional / polymerisation
					Reaction B polymerisation (1)	addition polymerisation	additional	

	stion nber							
FT	HT	Sub	-sectior	Mark	Answer	Accept	Neutral answer	Do not accept
	9	(a)		3	1:2 ratio from equation (1) 12 tonnes C would produce 128 tonnes of copper (1) 1.5 tonnes C would produce $1.5/12 \times 128$ $= 16 \text{ tonnes of copper} \qquad (1)$ $cao - 3 \text{ marks}$ alternative method using moles moles C = 0.125 (1) moles Cu = $0.25 \times 64 = 16$ (1)	15.9 (3 marks)		
		(b)		1	75%	consequential		

	stion nber		
FT	HT	Mark	Answer
FI	10 10	Mark 6 QWC	Indicative content: Ion exchange: beads containing sodium ions; calcium / magnesium ions in hard water are exchanged for sodium ions; column can be recharged by passing sodium chloride solution through it. Advantages – works on both permanent and temporary hardness; continuous. Disadvantages – cost of column; need to recharge; waste water from recharging can cause limescale in sewage works; increased sodium levels in softened water. Boiling: boiling causes hydrogencarbonate ions to decompose forming scale on heating element. Advantages – no need for expensive equipment. Disadvantages – forms limescale; does not work on permanent hardness. Only effective with small volumes of water. Washing soda: reacts with calcium and magnesium ions to produce insoluble salts but produces scum. Effective with both permanent and temporary. 5–6 marks

GCSE SCIENCE-CHEMISTRY MS - JANUARY 2014