Que: Num	stion Nber								
FT	ΗT	Su	Sub-section Mark Answer		Accept	Neutral answer	Do not accept		
8	1	(a)	(i)		1		2.8.8.1		
			(ii)		1		2.8.2 correct diagram of calcium structure / 2.8.8.2 [element to right of (a)(i) above rather than to right of original element drawn]		
		(b)			1	isotope			

Que	stion aber							
FT	HT	Sub	Sub-section Mark Answer		Answer	Accept	Neutral answer	Do not accept
9	2	(a)		2	Concentration: 8 (g/dm³)(1)Reason: experiment times close together / reaction times close together / little variation between times(1)	only 2 seconds variation between		
		(b)		1	use a light sensor / use a datalogger / same person recording the reaction times / same person adds the acid and starts the stopwatch / same person watches X disappear	Teaction times	use a computer	
		(c)		1	temperature		heat	catalyst
		(d)		3	 the higher the concentration, the faster the rate the higher the concentration the shorter the reaction time (1) the higher the concentration the more particles are present (1) the more particles the greater the chance of collision the more particles present more collisions per second the more particles present more collisions in a given time (1) 		more collisions	reference to increased energy

Que: Num	stion Nber							
FT	ΗT	Sub-section Mark		n Mark	Answer	Accept	Neutral answer	Do not accept
10	3	(a)	(i)	1	tarnish / lose their shiny appearance	go dull / less shiny	grey / forms an oxide / corrodes	reference to rust
			(ii)	1	they react at different speeds / potassium reacts the quickest / lithium reacts the slowest / the speed at which the change occurs	reactivity increases down the group		
		(b)	(i)	3	$A = bromine / Br_2 / Br$ $B = iodine / I_2 / I$ $C = chlorine / Cl_2 / Cl$ all correct (2)any one correct (1)Reason: reactivity decreases down the group (1)	chlorine most reactive, iodine least		
			(ii)	3	Reactants:Fe Cl2(1)Product:FeCl3(1)Balancing:2:3:2(1)Reactants and products must be correctbefore balancing mark can be awarded	multiples of 2 and 3 e.g. 4:6:4		

Ques	stion		
Num	ıber		
FT	ΗT	Mark	
11	4	6	Indicative content: Reference to sedimentation, filtration and chlorination together with the reason for each process e.g.
			sedimentation / settling tank: removal of large insoluble particles
			filtration / filter bed: removal of small insoluble particles removal of bacteria / germs / micro-organisms
			chlorination: kills remaining bacteria / germs / micro-organisms
			 5 - 6 marks: The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 3 - 4 marks: The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1 - 2 marks: The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1 - 2 marks: The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks: The candidate does not make any attempt or give a relevant answer worthy of credit.

PMT

Question Number								
FT	НТ	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)		3	All points plotted correctly $\pm \frac{1}{2}$ square(2)All but one point plotted correctly(1)Suitable line – judgement by eye(1)Consequential marking – ft			
	<u> </u>	(b)		1	67 ± 1 Consequential marking – ft			
		(c)		2	60 °C = 40 24 °C = 22 both needed for (1) 18 (1) Consequential marking – ft			

Question Number									
FT	ΗT	Su	Sub-section Mark		Answer		Accept	Neutral	Do not
			,					answer	accept
	6	(a)		3	 Two discrete diagrams needed: diagram 1 showing transfer of electrons diagram 2 showing ions Diagram 1 Calcium atom loses 2 electrons (1) Two fluorine atoms gain 1 electron each (1) Diagram 2 Ca²⁺ and 2 × F⁻ ions formed octet of electrons around F not needed discrete pair of ions needed for this mark 				
		(b)		2	three shared pairs of electrons (P-F's)	(1)			
					octets of electrons around P and all three Fs	(1)			

Que: Num	stion nber											
FT	HT	Su	b-sect	ion	Mark		Answer			Accept	Neutral answer	Do not
		()	(1)	1								accept
	7	(a)	(1)		3	A bromine / Br	2		(1)		Br	
						B ethane / C₂⊦	H ₆ / structural form	nula	(1)			
						C polyethene /	[/] polythene		(1)	$ \begin{array}{c c} H & H \\ & \\ -C - C + \\ & \\ H & H \end{array} $	$ \begin{bmatrix} H & H \\ I & I \\ -C - C - \\ I & H \end{bmatrix} $	
			(ii)		1	addition						additional
			(iii)	I	1	Reason: weak	t bonds between chains not linked	chains / mo together	lecules /	forces = bonds	layers	
						Accep	ot labelled diagra	am				
				11	1	thermoplastic				thermosoftening		
		(b)			3	mass/A _r	0.96/12 and	0.2/1	(1)			
							= 0.08	= 0.2				
						ratio	1	2.5	(1)			
						formula	C_2H_5		(1)	C ₄ H ₁₀		
						Consequentia	al marking – ft					

PMT

Que	stion							
Num	ıber			I		1	ſ	1
FT	ΗT	Su	Sub-section Mo		Answer	Accept	Neutral answer	Do not
								accept
	8	(a)	(1)	2	Any two for (1) each			
					All the water samples are hard / become softer			
					• X is not softened by bailing / X is permanently hard			
					 X is not softened by boiling / X is permanently hard Y and Z are softened by boiling / Y and Z are 			
					temporary hard			
			(ii)	2	Any two for (1) each			
					 Ca²⁺ (and Mg²⁺) present / 		reference to	
					X has the highest Ca ²⁺ / Mg ²⁺ content		only Mg ²⁺	
					• X has the highest sulfate (ion) content		X is the	
					• Y and Z contain high hydrogencarbonate (ion) content		nardest	
		(b)	(i)	2	Ca^{2+}/Mq^{2+} (in hard water) ions (1)			
		()	(.)	_				
					exchanged with Na ⁺ ions(in resin) /	replace	reference to	'react
					swapped with Na ⁺ ions (in resin) (1)		'displace'	with'
			(")					
			(11)	1	Any one for (1)		aget of process	
					 resin needs regular replenishing / regeneration (with Na⁺ions) 		cost of process	
					 disposal of waste water (after regeneration) / 	Na ⁺ ions	cost of sodium	
					Na ⁺ ions pollute water	could be bad	solution for	
					• iron fouling	for heart	regeneration	
					bacteria contamination		-	
					chlorine contamination			

PMT

Que Nur	stion nber								
FT	ΗТ	Sub-section		Mark	Answer		Accept	Neutral	Do not
	9			3	$M_{\rm r}({\rm NaHCO}_3) = 84$ $M_{\rm r}({\rm Na}_2{\rm CO}_3) = 106$ both needed ((1)	Moles approach $M_r(NaHCO_3) = 84$ $Mr(Na_2CO_3) = 106$ (1)	answer	accept
					2 (84) → 1 (106) 2:1 ratio (168 106 84 53	(1)	8.4/84 = 0.1 2 \longrightarrow 1 2:1 ratio (1) 0.1 0.05		
					8.4 5.3 ((1)	0.05 × 106 = 5.3 (1)		
					cao (3)				

Que	stion		
Nun	nber		
FT	ΗT	Mark	
	10	6	Indicative content: For diamond and graphite – reference made to bonding, structure and properties related to uses
			Diamond
			Bonding: uniform covalent / strong covalent bonds throughout / each carbon atom joined to four others Structure: giant molecular / covalent
			Properties and uses: hard – drill bits
			transparent /sparkly – jewellery
			Graphite
			Bonding: strong bonds within layers and weak bonds between layers / carbon atoms / each joined to three others Structure: giant molecular / covalent in layers
			Properties and uses: soft – pencils electrical conductor – electrodes
			 5 - 6 marks: The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 3 - 4 marks: The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1 - 2 marks: The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and some accurate spelling, punctuation and grammar. 1 - 2 marks: The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks: The candidate does not make any attempt or give a relevant answer worthy of credit.

GCSE SCIENCE - CHEMISTRY (NEW) MS - January 2013