Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Pearson Edexcel Inter	
Thursday 8 June 202	23
Morning (Time: 2 hours)	Paper reference 4PM1/02R
Further Pure Mat	hematics
Calculators may be used.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{2}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
 $\sin(A-B) = \sin A \cos B - \cos A \sin B$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$cos(A + B) = cos A cos B - sin A sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	$f(x) = 2x^2 + (k+8)x + k$	
	Show that for all values of k , the equation $f(x) = 0$ has distinct real roots.	
		(4)
	(Total for Question 1	is 4 marks)

2	Find	the	set	of '	values	of x	for	which
_	1 1114	u_1v_1	\mathcal{L}	$\mathbf{o}_{\mathbf{I}}$	v aracs	OI N	101	** 111011

(a)
$$2(x+1) < 5x - 2$$

(2)

(b)
$$3x^2 - x \le 10$$

3)

(c) **both**
$$2(x+1) < 5x - 2$$
 and $3x^2 - x \le 10$

(1)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the sector *OAB* of a circle with centre *O*.

The radius of the circle is r cm and the angle AOB is θ radians.

The area of the sector is 675 cm²

(a) Show that the perimeter of the sector, P cm, is given by

$$P = 2r + \frac{1350}{r} \tag{3}$$

Given that r can vary,

(b) find, using calculus, the minimum value of P Give your answer in the form $a\sqrt{b}$ where a is an integer and b is a prime number.

(5)

(c) Justify that the value of P you found in (b) is a minimum.

(2)

4 O, A and B are fixed points such that

$$\overrightarrow{OA} = 5\mathbf{i} + 7\mathbf{j}$$
 $\overrightarrow{AB} = a\mathbf{i} + 16\mathbf{j}$ and $\left| \overrightarrow{OB} \right| = 5\sqrt{29}$

(4)

Given that a > 0

								\longrightarrow
(1)	C" 1	• ,	4	41 4	•	parallel	4	AT
In	Tina	ว บทบ	Vector	that	1 C	narallel	$T \cap$	ΔR
101	IIIIu	a umi	V CC LOI	unai	10	paranci	w.	μ
\ /						1		

(2)

5	A particle	P is	moving	along	the x -a	axis.
---	------------	------	--------	-------	------------	-------

At time t seconds, $t \ge 0$, the velocity, v m/s, of P is given by

$$v = 2t^2 - 19t + 35$$

(a) Find the acceleration of P when t = 5

(2)

The particle comes to instantaneous rest at the points A and B at times t_1 seconds and t_2 seconds respectively, where $t_1 < t_2$

(b) Find the value of t_1 and the value of t_2

(2)

(c) Use calculus to find the distance AB

(3)

6
$$f(x) = 2x^2 + 5x - p$$

The equation f(x) = 0 has roots α and β

Given that $\alpha^3 + \beta^3 = -\frac{215}{8}$

(a) find the value of p

(5)

(5)

Without solving the equation f(x) = 0

(b) form a quadratic equation, with integer coefficients, that has roots

$$\frac{\alpha+\beta}{\alpha^2}$$
 and $\frac{\alpha+\beta}{\beta^2}$

Question 6 continued	

Figure 2

Figure 2 shows part of the curve S with equation $y = (\cos 3\theta + \sqrt{3} \sin 3\theta)^{\frac{1}{2}}$

where $m \le \theta \le n$

The curve S meets the x-axis at the point with coordinates (m, 0) and at the point with coordinates (n, 0)

(a) Find the exact value of m and the exact value of n

(3)

The finite region R, shown shaded in Figure 2, is bounded by the curve S, and the x-axis in the region $m \le \theta \le n$

The region *R* is rotated through 2π radians about the *x*-axis.

(b) Use calculus to find the exact volume of the solid generated.

(4)

Question 7 continued	

- 8 The points A and B have coordinates (1,5) and (9,9) respectively.
 - (a) Find an equation of line AB, giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)

The line l is perpendicular to AB and passes through the point X which lies on AB such that AX : XB = 3:1

(b) Show that an equation of *l* is y = -2x + 22

(5)

The point C has coordinates (6, p)

Given that C lies on l

(c) find the value of p

(1)

ABCD is a parallelogram where the x coordinate of D is negative.

(d) Find the coordinates of the point D

(3)

(e) Find the area of the parallelogram ABCD

(4)

....

Question 8 continued	

- A curve C has equation $y = \frac{3-2x}{x+6}$ where $x \neq -6$
 - (a) Write down an equation of the asymptote to C that is parallel to the
 - (i) x-axis
- (ii) y-axis

(2)

- (b) Find the coordinates of the point where C crosses the
 - (i) x-axis
- (ii) y-axis

(2)

(c) Using the axes opposite, sketch the graph of C, showing clearly its asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

(d) Show that the gradient of the tangent to C is always negative.

(3)

A tangent to C has equation $y = -\frac{3}{5}x + k$ where k > 0

(e) Find the value of k

(5)

Question 9 continued	
<i>y</i> .	
O	x

Question 9 continued	

10 Solve the equation		
	$\log_4 x^3 + 8\log_x 64 = 22$	
		(7)

11 (a) Use a formula on page 2 to show that $\sin^2 A = \frac{1}{2}(1 - \cos 2A)$

(3)

(b) Show that $\sin^4 x + \cos^4 x = \frac{3 + \cos 4x}{4}$

(5)

(c) Hence solve, in degrees to one decimal place, the equation

$$8\sin^4\left(\frac{\theta}{2}\right) + 8\cos^4\left(\frac{\theta}{2}\right) = 5\sin(2\theta) + 6 \quad \text{for } 0^\circ \leqslant \theta < 180^\circ$$
 (4)

|
 | |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|
 | |
|
 | |

Question 11 continued
(Total for Question 11 is 12 marks)

TOTAL FOR PAPER IS 100 MARKS

