

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P72829A
Publications Code 4MA1_2HR_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent

- o indep independent
- awrt answer which rounds to
- eeoo each error or omission

No working

If no working is shown, then correct answers normally score full marks.

If no working is shown, then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams) and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. E.g. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line, then check the working for an obvious answer.

Parts of question

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another,

Brackets and speech marks:

 0.32×200 (= 64) the brackets here mean that the calculation is required for the mark and not the answer – however the answer would also secure the mark. If a student gave $0.32 \times 200 = 68$ they would still gain the mark as the method is correct and does not require the calculation to be correct for the award of the mark.

64 alone would also gain the mark.

200 - "146"

This shows that the calculation requires 200 minus the calculation that gave 146; if the calculation was shown but inaccurately worked out then the method mark would still be gained.

Eg 146 should have come from 0.73×200

If the student had given $0.73 \times 200 = 156$ and then given 200 - 156 this would have gained the method mark.... the 156 came from a correct calculation even though the arithmetic was incorrect.

International GCSE Maths

Apart from questions 16, 21, 23, 24 and 25 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an

incorrect method, should be taken to imply a correct method

0	TY 1.	A	37 1	NT 4
Q	Working	Answer	Mark	Notes
1 (a)	25 ±		2	M1 for either 25 or –12 in the correct
	or			place or the correct substitution shown
	– 12			with brackets around –5
	or			
	$(-5)^2 - 4 \times 3$ or $(-5)^2 - 4(3)$ or			
	$-5 \times -5 - 4 \times 3 \text{ or } -5 \times -5 - 4(3)$			
	Correct answer scores full marks (unless from	13		A1
	obvious incorrect working)			(M0A0 for -37 without any working)
(b)	$x^2 + 5x - 7x - 35$		2	M1 for any 3 correct terms or for 4 out of
				4 correct terms ignoring signs or
				for $x^2 - 2x$ or
				for $-2x - 35$
	Correct answer scores full marks (unless from	$x^2 - 2x - 35$		A1 oe
	obvious incorrect working)			Ignore solutions/roots if correct expansion
				seen
		·		Total 4 marks

2	9, 18, 27, 36 and 12, 24, 36		4	M1 for at least two multiples of 9 and 12
_	or 36			or
	or a multiple of 36			36
	or			or
	$(9 \times 12 =) 108$			a multiple of 36
	or			
	$3^2 \times 4$ (= 36) (from Venn diagram or table)			
	"4" \times 7.6(0) or "3" \times 4.8(0) or			M1 for a correct method to find the cost
	"30.4" or "14.4" or			of 4 or 8 or 12 etc of packets of pens
	" $4n$ " × 7.6(0) or " $3n$ " × 4.8(0)			or
				3 or 6 or 9 etc packets of pencils
	"4" \times 7.6(0) + "3" \times 4.8(0)			M1 for a correct combination of
	or			number of packets of pens \times 7.6(0) +
	"30.4" + "14.4"			number of packets of pencils \times 4.8(0)
	or			with an intention to add
	" $4n$ " × 7.6(0) + " $3n$ " × 4.8(0)			eg
	4n - 7.0(0) + 3n - 4.8(0)			pens pencils
				$4 \times 7.60 + 3 \times 4.8 = 44.8(0)$
				$8 \times 7.60 + 6 \times 4.8 = 89.6(0)$
				$12 \times 7.60 + 9 \times 4.8 = 134.4(0)$
				$16 \times 7.60 + 12 \times 4.8 = 179.2(0)$
				$36 \times 7.60 + 27 \times 4.8 = 403.2(0)$
				$48 \times 7.60 + 36 \times 4.8 = 537.6(0)$
	Correct answer scores full marks (unless from	44.8(0)		A1 allow 45 if 44.8(0) seen
	obvious incorrect working)			allow 4480 p or pence if £ sign crossed
				out
				M3A0 for $44.8n$ where n is an integer (eg
				134.4(0))
				Total 4 marks

3	3.3 or $\frac{33}{10}$ or $3\frac{3}{10}$ or $3\frac{18}{60}$ oe or $180 + 18$ or 198 oe		3	B1 for working out the time in hours or minutes
	$515 \div 3.3 \text{ or } 515 \div \frac{33}{10} \text{ or } 515 \div 3\frac{3}{10} \text{ or } \frac{515}{"198"} \times 60 \text{ oe}$			M1 Units must be consistent
	Correct answer scores full marks (unless from obvious incorrect working)	156		A1 allow 156 – 156.1 SCM1 for 515 ÷ 3.18 (= 161.9 or 162) Total 3 marks

4			2	M1 for $-7n + k$ ($k \neq 45$) or $-7 \times n + k$ ($k \neq 45$) or $n \times -7 + k$ ($k \neq 45$) ($k = 45$) ($k = 45$) may be zero or absent or negative)
		45 – 7n		A1 oe eg $45 - 7 \times n$ oe or $-7 \times n + 45$ oe or $U_n = 45 - 7n$ oe or 38 - 7(n - 1) oe NB: award full marks for eg x = 45 - 7n oe or n th term $= -7 \times n + 45$ oe or but only M1 for $n = 45 - 7n$ oe
	Correct answer scores full marks (unless from obvious incorrect working)			Total 2 marks

5	$\frac{1}{2}(330+170) \times 240 (= 60\ 000) \text{ oe or}$ $\left(\frac{80\times240}{2}\right) + \left(170\times240\right) + \left(\frac{80\times240}{2}\right) (= 60\ 000) \text{ oe or}$		4	M1 for working out the area of the trapezium
	(2 × 9600) + 40 800 (= 60 000) oe [60 000] ÷ 10 000 (= 6) or 10 000 × 6 (= 60 000)			M1 ft their area (must come from a two dimensional area) Allow their area / 10 000
	49 650 ÷ [6]			M1 dep on either previous M1 ft their number of hectares Allow 49 650 their number of hectares
	Correct answer scores full marks (unless from obvious incorrect working)	8275		A1 Total 4 marks

6 (a)	$7 \times 5 \times 14 \ (= 490) \ \text{oe or}$		4	M1 for working out the pay per week or
	$7 \times 14 \ (= 98) \ \text{and} \ 400 \div 5 \ (= 80)$			pay per day
	"490" – 400 (= 90) or			M1
	"98" – "80" (= 18) or			
	"98" ÷ "80" oe or "490" ÷ 400 oe or 1.225 oe			
	$\frac{"90"}{400} (\times 100) (= 0.225)$ oe or			M1 dep on M2
	$\frac{"18"}{"80"} (\times 100) (= 0.225)$ oe or			
	$\frac{"98"}{"80"} \times 100 (=122.5)$ oe or			
	$\frac{"490"}{400} \times 100 (=122.5)$ oe or			
	"1.225" – 1 (= 0.225)			
	Correct answer scores full marks (unless from	22.5		A1 oe allow 23% with M3 awarded
	obvious incorrect working)			
(b)	E.g. $1 - 0.06 = 0.94$ or		3	M1
	100(%) - 6(%) (= 94(%)) or			
	$\frac{23030}{94}$ (= 245) oe			
	E.g. 23 030 ÷ "0.94" or			M1
	23 030 ÷ "94" × 100 or			
	23 030 × 100 ÷ "94" or			
	"245" × 100			
	Correct answer scores full marks (unless from obvious incorrect working)	24 500		A1
	oovious incorrect working)			Total 7 marks

7 (a)	1	1	B1 cao
(b)	-6	1	B1 Allow 3 ⁻⁶
			Total 2 marks

8 (a)	$-4x > 17 - 9 \text{ or } -4x > 8 \text{ or}$ $9 - 17 > 4x \text{ or } -8 > 4x \text{ or}$ $\frac{9}{4} - x > \frac{17}{4} \text{ oe or } -\frac{9}{4} + x < -\frac{17}{4} \text{ oe}$		2	M1 for a correct first step Condone = rather than > or any other sign for this mark.
	Correct answer scores full marks (unless from obvious incorrect working)	<i>x</i> < -2		A1 oe eg $-2 > x$ (sight of correct answer in working space and just $(x =) -2$ on answer line gains M1 only)
(b)		$y \ge 2$ $x \le 6$ $y \le x$	3	B3 for all 3 correct Allow $2 \le y$, $6 \ge x$ and $x \ge y$ B2 for 2 correct B1 for 1 correct Allow < and > signs SCB2: $y \le 2$, $y \ge x$ and $x \ge 6$ (for all 3) Allow < and > signs
	Correct answer scores full marks (unless from obvious incorrect working)			Total 5 marks

9	$\sin 32 = \frac{(BC)}{50} \text{ or } \cos 32 = \frac{(CD)}{50} \text{ or }$ $\frac{(BC)}{\sin 32} = \frac{50}{\sin 90} \text{ oe or } \frac{(CD)}{\sin (90 - 32)} = \frac{50}{\sin 90} \text{ oe}$		6	M1
	$(BC =) 50 \sin 32 (= 26.4(959)) \text{ or}$ $(BC =) \sqrt{50^2 - (50\cos 32)^2} (= 26.4(959)) \text{ or}$ $(BC =) \sqrt{50^2 - "42.4"^2} (= 26.4(998)) \text{ or}$			M1 for finding BC or AD Can be written on the diagram
	$(BC =) \frac{50}{\sin 90} \times \sin 32 \text{ oe}$ $(CD =) 50 \cos 32 (= 42.4(024)) \text{ or}$ $(CD =) \sqrt{50^2 - (50 \sin 32)^2} (= 42.4(024)) \text{ or}$ $(CD =) \sqrt{50^2 - "26.4"^2} (= 42.4(622)) \text{ or}$ $(CD =) \frac{50}{\sin 90} \times \sin (90 - 32)$			M1 for finding <i>CD</i> or <i>BA</i> Can be written on the diagram
	$(r =) \text{``42.4(024)''} \div 2\pi (= 6.74(855))$ $(V =) \pi \times \text{``6.74(855)''}^2 \times \text{``26.4(959)''}$			M1 for finding the radius of the cylinder M1 dep on previous M mark for the use of $\pi r^2 h$
	Correct answer scores full marks (unless from obvious incorrect working)	3790		A1 allow answers in the range 3737 – 3794 Accept answers in standard form Total 6 marks

10	$104 \times 5 = 520$ or $127 \times 7 = 889$ or		3	M1
	$\frac{m+tu+w+th+f}{=104 \text{ oe}}$			
	5			
	"889" – "520" – 132 or "369" – 132 or			M1 ($x = Sunday$)
	$\frac{"520"+132+x}{7}$ = 127 oe or $\frac{132+x}{2}$ = $\frac{369}{2}$ oe			
	$652 + x = 127 \times 7$			
	Correct answer scores full marks (unless from obvious incorrect working)	237		A1
				Total 3 marks

11	m^9k^{15}	2	B2 oe for all 3 correct eg $125^{-1}m^9k^{15}$ or
	$\frac{m^9k^{15}}{125}$		_
			$\frac{1}{125}m^9k^{15}$
			Accept $a = 9$, $b = 15$ and $c = 125$
			B1 for a quotient in the form of $\frac{m^p k^q}{r}$ or
			a product in the form $r^{-1}m^pk^q$ where 2
			from p or q or r are correct
			$ eg \frac{m^9 k^{15}}{25} \text{ or } 125m^9 k^{15} $
			Allow $m^9 k^{15}$ or $\frac{m^9}{125}$ or $125^{-1} m^9$ or $\frac{k^{15}}{125}$ or
			$125^{-1}k^{15}$ so long as not added to any other
			terms
			Accept two from $a = 9$ or $b = 15$ or
			c = 125
			Accept $y125^{-1}m^9k^{15}$ or $\frac{ym^9k^{15}}{125}$ where y is
			constant
			Total 2 marks

12 (a)	D	1	B1 allow d
(b)	С	1	B1 allow c
(c)	В	1	B1 allow b
			Total 3 marks

12	, , , 3		_	M1
13	$80000 \times \left(\frac{100 + x}{100}\right)^3 = 80000 + 6151.25$ oe or		5	M1
	$80000 \times \left(1 + \frac{x}{100}\right)^3 = 80000 + 6151.25\text{oe}\mathbf{or}$			
	$80000 \times (1+x\%)^3 = 80000 + 6151.25$ oe or			
	$80000 \times y^3 = 80000 + 6151.25$ oe or			
	$\frac{80000 + 6151.25}{80000}$ (= 1.076) oe or			
	$\frac{86151.25}{80000}$ (= 1.076) oe			
	$\sqrt[3]{\frac{80\ 000 + 6151.25}{80\ 000}} $ (= 1.025) oe or			M1
	$\sqrt[3]{"1.076"}$ (= 1.025) or $\left(1 + \frac{x}{100} = \right) \frac{41}{40} \left(= 1.025\right)$			
	Correct answer scores full marks (unless from obvious incorrect working)	2.5		A1 Accept answers in the range 2.4 – 2.6 from correct working NB Do not allow an answer in the range 2.4 – 2.6 if it comes from awrt 7.6% oe or 7.7% oe divided by 3 Do not accept an answer if it is in the range that comes from a simple interest method
				Total 3 marks

14 (a)	20 20 22 23 25 26 26 27 28 29 29		3	M1 for ordering the numbers
	22 and 28 identified for LQ and UQ eg 20 20 22 23 25 26 26 27 28 29 29			Allow one omission or error in the list M1 for identifying 22 and 28 (22 and 28 implies the first M1)
	Correct answer scores full marks (unless from obvious incorrect working)	6		A1
(b)		Akari and reason using IQR	1	B1 ft from part (a) Akari as the IQR is lower/smaller oe (IQR must be part of the statement) Must have a value in (a) to compare the IQRs
				Total 4 marks

15	$\sqrt[3]{\frac{27}{64}} \left(= \frac{3}{4} = 0.75 \right)$		3	M1 for finding the probability of a head
	$\left(1 - \frac{3}{4}\right)^3$ or $\left(\frac{1}{4}\right)^3$ or 0.25^3			M1 for a complete method
	Correct answer scores full marks (unless from	1		A1 oe
	obvious incorrect working)	64		Accept 0.015(625) or 1.55(625)%
				truncated or rounded
				Total 3 marks

16	$\frac{2\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \text{ or }$ $\frac{2\sqrt{3}}{\sqrt{3}-1} \times \frac{-\sqrt{3}-1}{-\sqrt{3}-1}$		3	M1 for explicitly multiplying the numerator and the denominator by $\sqrt{3} + 1$ or $-\sqrt{3} - 1$
	$\frac{2 \times 3 + 2\sqrt{3}}{3 - 1} \text{ or } \frac{6 + 2\sqrt{3}}{3 - 1} \text{ or } \frac{6 + 2\sqrt{3}}{2} \text{ oe}$ $\frac{-2 \times 3 - 2\sqrt{3}}{-3 + 1} \text{ or } \frac{-6 - 2\sqrt{3}}{-3 + 1} \text{ or } \frac{-6 - 2\sqrt{3}}{-2} \text{ oe}$			M1 dep on M1 (numerator expanded for 2 terms which need to be all correct and denominator may be 4 terms which need to be all correct)
	Working required	$3+\sqrt{3}$		A1 allow $\sqrt{3} + 3$ (dep on M2)
				Total 3 marks

17	$v^3 = \frac{6+5x}{}$		4	M1 for removing cube root
	x+4 $xy^3 + 4y^3 = 6 + 5x \text{ oe}$			M1 for multiplying by denominator and expanding in a correct equation or
	$x - \frac{5x}{y^3} = \frac{6}{y^3} - 4$			for gathering <i>x</i> terms on one side and the other terms on the other side in a correct equation in fractional form
	$xy^3 - 5x = 6 - 4y^3$			M1 for gathering terms in x on one side and other terms the other side in a correct equation or
	Correct answer scores full marks (unless from obvious incorrect working)	$x = \frac{6 - 4y^3}{y^3 - 5}$		for removing all fractions A1 or $x = \frac{4y^3 - 6}{5 - y^3}$
				SCB2 for $x = \frac{6 - 4y^{\frac{1}{3}}}{y^{\frac{1}{3}} - 5}$ or $x = \frac{4y^{\frac{1}{3}} - 6}{5 - y^{\frac{1}{3}}}$ $y^{\frac{1}{3}}$ can also be y^2
				Total 4 marks

18	$DP \times 12 = 30 \times 14 \text{ or}$		3	M1
	$DP \times 12 = 420 \text{ or}$			
	$(DC + 12) \times 12 = 30 \times 14 \text{ or}$			
	$(DC + 12) \times 12 = 420 \text{ or}$			
	12DC + 144 = 420 or			
	DC + 12 = 35 or			
	$(DP) = \frac{30 \times 14}{12} (= 35)$			
	(25) 10 an 22 + 12 25 an			M1
	33 - 12 01 23 + 12 - 33 01			IVII
	$(DC =) \frac{"420" - "144"}{12} \text{ or}$			
	$(DC =) \frac{"276"}{12}$			
	Correct answer scores full marks (unless from	23		A1
	obvious incorrect working)			
				Total 3 marks

19	(19+15+4)-30 or $38-30$ or $19+15-26$		4	M1 for a	M1A1 for a fully correct
				correct	Venn diagram
	or			method to find	
				the number of	
				people	
	$\left \begin{array}{c c} 19-x & x \\ \hline \end{array} \right 15-x $			booking breakfast and	
				dinner	4
				diffici	8
	Т				or for $\frac{8}{30}$
	or				30
	19 - x + x + 15 - x + 4 = 30 oe				
	8			A1 can be	
				shown in a	
				Venn diagram	
				or a valid	
				calculation	
	$\frac{8}{30} \times \frac{7}{29}$ or				of $\frac{k}{30} \times \frac{k-1}{29}$ where $k < 30$
	$\frac{8}{30} \times \frac{8}{30} = \frac{64}{900} \text{ or } \frac{16}{225} \text{ oe}$			or $\frac{"8"}{n} \times \frac{"8"-1}{n-1} $ v	where $n \setminus 8$
	$\frac{1}{30} \stackrel{?}{\sim} \frac{1}{30} = \frac{1}{900} = \frac{1}{225} = \frac{1}{30} = \frac$			$n \wedge \overline{n-1}$	viicic n > 0
	Correct answer scores full marks (unless from			A1 oe awrt 0.06	4 or awrt to 6.4%
	obvious incorrect working)	$\overline{435}$			
					Total 4 marks

20	$180 - 78 - 78$ oe or $(90 - 78) \times 2$ oe		2	M1 for a complete correct method to find angle <i>ABC</i> . This is not awarded if the angles are incorrectly labelled unless they have clearly started again (Ignore incorrect angles on the diagram if a student shows a correct method leading to the required answer)
	Correct answer scores full marks (unless from obvious incorrect working)	24		A1 award full marks if 24 is seen in the correct place on the diagram unless contradicted on the answer line
				Total 2 marks

21	Eg	eg	5	M1 for substitution of $y = \pm 2x \pm 1$ (or
	$(2x+1)^2 + x(2x+1) = 7$	$y^2 + \left(\frac{y-1}{2}\right)y = 7$		$x = \frac{\pm y \pm 1}{2}$) into $y^2 + xy = 7$ to obtain an
				equation in x only (or y only)
	E.g.	E.g.		M1ft dep on previous M1 for multiplying
	$6x^2 + 5x - 6 = 0$	$3y^2 - y - 14 = 0$		out and collecting terms, forming a three
	$6x^2 + 5x = 6$	$3y^2 - y = 14$		term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2 coefficients (a or b
				or c) are correct
	E.g.	E.g.		M1ft dep on first M1 method to solve
	(2x+3)(3x-2)(=0)	(y+2)(3y-7)(=0)		their 3 term quadratic using any correct
	or	or		method (allow one sign error and some
				simplification – allow as far as eg
	$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 6 \times -6}}{2 \times 6}$	$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 3 \times -14}}{2 \times 3}$		$\frac{-5 \pm \sqrt{25 + 144}}{12}$ or $\frac{1 \pm \sqrt{1 + 168}}{6}$ or if
	or	or		factorising allow brackets which
	$\left(x + \frac{5}{12}\right)^2 - \left(\frac{5}{12}\right)^2 = 1$	$\left(y - \frac{1}{6}\right)^2 - \left(\frac{1}{6}\right)^2 = \frac{14}{3}$		expanded give 2 out of 3 terms correct) or correct values for x or
	$\left(x = -\frac{3}{2} \text{ and } x = \frac{2}{3}\right)$	$\left(y = -2 \text{ and } y = \frac{7}{3}\right)$		correct values for y Accept $(x =) 0.6(66)$ rounded or truncated or $(y =) 2.3(33)$
	$y = 2\left("-\frac{3}{2}"\right) + 1(=-2)$	$-2 = 2x + 1$ or $x = -\frac{3}{2}$		M1ft dep on previous M1 for substituting their 2 found values of x or y into one of
	and	and		the two given equations
	$y = 2\left(\frac{2}{3}\right) + 1\left(=\frac{7}{3}\right)$	$\frac{7}{3} = 2x + 1 \text{ or } x = \frac{2}{3}$		or fully correct values for the other variable (correct labels for x / y)

	$ \begin{pmatrix} -\frac{3}{2}, -2 \\ \frac{2}{3}, \frac{7}{3} \end{pmatrix} $	A1 oe dep on M2 allow $x = -1.5$, $y = -2$ x = 0.66(6), $y = 2.33(3)$ truncated or rounded
Working required		Total 5 marks

22 (a)	$\sqrt{4^2 + 9^2 + 15^2} \left(= \sqrt{322} = 17.9(443) \right)$ or		2	M1
	$\sqrt{15^2 + 4^2} \left(= \sqrt{241} = 15.5(241) \right)$ and			
	$\sqrt{9^2 + ("\sqrt{241}")^2} \left(= \sqrt{322} = 17.9(443) \right)$			
		17.9		A1 awrt 17.9
(b)	$(UR =) 42 \tan 30 (= 14\sqrt{3} = 24.2(487))$ or		3	M1
	$(UR =) \frac{42 \times \sin 30}{\sin (90 - 30)} (= 14\sqrt{3} = 24.2(487))$			
	$\tan\left(UMR\right) = \left(\frac{"24.248"}{42 \div 2}\right) \text{ or }$			M1
	$\tan\left(UMR\right) = \left(\frac{"24.248"}{21}\right) \text{ or }$			
	$\tan\left(UMR\right) = \left(\frac{14\sqrt{3}}{21}\right) \text{ or }$			
	$(UM =)\sqrt{\left(\frac{42}{2}\right)^2 + \left("14\sqrt{3}"\right)^2} \left(=7\sqrt{21} = 32.0(780)\right)$			
	and $\sin(UMR) = \left(\frac{"14\sqrt{3}"}{"7\sqrt{21}"}\right) \operatorname{or} \cos(UMR) = \left(\frac{21}{"7\sqrt{21}"}\right)$			
	Correct answer scores full marks (unless from obvious incorrect working)	49.1		A1 awrt 49.1
				Total 5 marks

23	(7p-3)-(8p)=(4p+2)-(7p-3) oe or		5	M1 for using $U_2 - U_1 = U_3 - U_2$ or
	-p-3 = -3p + 5 oe or			$U_1 - U_2 = U_2 - U_3$
	(p =) 4			Condone missing brackets around $7p - 3$
	$a = 32$ or $d = -7$ or $32 \ 25 \ 18$			A1 dep on M1 (32 and -7 may be embedded in the S_n formula or embedded in U_n formula)
	$\frac{n}{2} \Big[2(32) + (n-1)(-7) \Big] = -1914$			M1 The values of a and d must be correct Condone missing brackets around $n-1$
	$7n^2 - 71n - 3828 (= 0)$ oe			A1 (can be implied by $n = 29$ and/or $n = -\frac{132}{7}$)
	Working required	29		A1 dep on M2
				Total 5 marks

23 ALT	7p - 3 = 8p + d $-3 = p + d4p + 2 = 8p + 2d$ $2 = 4p + 2d4p + 2 = 7p - 3 + d$ $5 = 3p + d$		5	M1 for using $U_n = a + (n-1)d$ to set up 2 equations for U_2 and U_3
	$a = 32$ or $d = -7$ or $32 \ 25 \ 18$			A1 dep on M1 (32 and -7 may be embedded in the S_n formula or embedded in U_n formula)
	$\frac{n}{2} \Big[2(32) + (n-1)(-7) \Big] = -1914$			M1 The values of a and d must be correct Condone missing brackets around $n-1$
	$7n^2 - 71n - 3828 (= 0)$ oe			A1 (can be implied by $n = 29$ and/or $n = -\frac{132}{7}$)
	Working required	29		A1 dep on M2 Total 5 marks

4	eg		5	M1	M2 for
	$4\pi R^2 = 9 \times 4\pi r^2 \text{ oe or}$				$(\text{vol SF} =) 27 \text{ or } \frac{1}{27} \text{ or }$
	R = 3r oe or			M1 (a correct	$3^3 \text{ or } \frac{1}{3^3}$
	1:3 or 3:1 or 3 or $\frac{1}{3}$			scale factor of 3 or $R = 3r$ oe	33
	3			implies the first	
	eg			M1) M1 for a correct	t equation based on
	$\left(\frac{4}{3}\pi(3r)^3 - \frac{4}{3}\pi r^3 = 117\pi \text{ oe or }\right)$			volumes with on	ly one variable eg R or r
				or <i>x</i> (M3 for	
	$\left(\frac{4}{3}\pi r^3 - \frac{4}{3}\pi \left(\frac{1}{3}r\right)^3 = 117\pi \text{ or }\right)$			$26 \times \frac{4}{3} \pi r^3 = 117.$	π oe or
	$27 \times \frac{4}{3} \pi r^3 - \frac{4}{3} \pi r^3 = 117 \pi \text{ oe or}$			$26 \times (Vol)_B = 11$	7π or
	$\frac{4}{3}\pi r^3 - \frac{1}{27} \times \frac{4}{3}\pi r^3 = 117\pi \text{ oe or}$			$\frac{26}{27} \times \frac{4}{3} \pi r^3 = 117$	$J\pi$ oe or
	oe			$\left \frac{26}{27} \times (Vol)_A = 11 \right $	
	$\left(r=\right)\sqrt[3]{\frac{117\times3}{104}}\left(=\sqrt[3]{\frac{27}{8}}\right)\text{or}$			M1 dep on previ	ous M mark
	$(R =) \sqrt[3]{\frac{117 \times 81}{104}} \left(= \sqrt[3]{\frac{729}{8}} = \frac{9}{2} \right)$				
	Working required	$\frac{3}{2}$		A1 oe dep on M2	2
					Total 5 marks

25	(gradient of $AB = $) " $-\frac{1}{2}$ " or "2" $m = -1$		6	M1 for the use of $m_1 \times m_2 = -1$ or
	2			for " $-\frac{1}{2}$ " embedded in a linear equation
				eg $y = "-\frac{1}{2}"x + c$
	(gradient of $AB = \frac{k-7}{6-j}$ oe			M1 for a correct expression for the gradient which may be seen in an
	or			equation or
	(midpoint of $AB = $) $\left(\frac{j+6}{2}, \frac{k+7}{2}\right)$ oe			for a correct expression for the midpoint which may be seen in an equation.
	$\frac{k-7}{6-j} = -\frac{1}{2}$ oe or $2k-j = 8$ oe			M1 for setting up a correct equation for <i>AB</i> in terms of gradient
	or			for setting up a compact a question for the
	$\left(\frac{k+7}{2}\right) - 2\left(\frac{j+6}{2}\right) = 7 \text{ oe or } k-2j = 19 \text{ oe}$			for setting up a correct equation for the line given and the midpoint
	$\frac{k-7}{6-j} = -\frac{1}{2}$ oe or $2k-j = 8$ oe			A1 for 2 correct equations
	and			
	$\left(\frac{k+7}{2}\right) - 2\left(\frac{j+6}{2}\right) = 7 \text{ oe or } k-2j = 19 \text{ oe}$			
	k = -1 and $j = -10$			A1 for a correct value of k and a correct
				value of j
	Working required	(-2,3)		A1 dep on previous M1
				Total 6 marks

26 (a)	2	1	B1 cao
(b)	3	1	B1 cao
(c)	1	1	B1 cao
			Total 3 marks