

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number P71953A Publications Code 4CH1_2CR_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer			Notes	Marks
1 (a)	Subatomic particle proton neutron electron	Relative mass 1 1 0.0005	Relative charge +1 0 -1		All 4 correct = (2) 2 or 3 correct = (1) 0 or 1 correct = (0)	2
(b) (i)	A increasing atc B is incorrect as of increasing m C is incorrect as of increasing re D is incorrect as of increasing re	s elements are n elting point s elements are n activity s elements are n	ot arranged in ot arranged in	order		1
(ii)	D Group 5 Perio A is incorrect as Period 5 B is incorrect as Period 5 C is incorrect as Period 2	s phosphorus is r s phosphorus is r	not in Group 3	and		1
(iii)	M1 Xe / xenon M2 because it h electrons) / 8 e shell				M2 dep on M1 IGNORE refs to noble gas	2 Total 6

Question number	Ansv	wer	Notes	Marks
2 (a)	Physical state at room temperature	Colour		2
	gas	pale green / yellow		
	gas	green		
	liquid	red-brown		
	solid	grey		
(b)	M1 bromine <u>water</u> / bro	omine <u>solution</u>	ALLOW aqueous bromine	2
	M2 turns colourless / de	ecolourised	IGNORE any starting colour	
			M2 is dep on mention of bromine in M1	
(c)	M1 (mixture) turns (from	m colourless) to brown	ALLOW red-brown / orange- brown	3
	M2 iodine / I_2 is displac	ed	REJECT iodide	
	OR		IGNORE a displacement reaction occurs	
	(chlorine reacts with ion form iodine	dide ions) to produce /	M2 can be scored by I ₂ as a product in a balanced equation or by a word equation	
	M3 (because) chlorine i iodine)	s more reactive (than	ALLOW reverse argument	
			REJECT iodide, except if already penalised in M2	
				Total 7

	uestio umbe		Answer	Notes	Marks
3 (a	a)	(i)	magnesium		1
		(ii)	M1 gold	IGNORE silver	2
			M2 is the least reactive	M2 DEP on M1	
				ALLOW it is (the most) unreactive	
((b)	(i)	(an alloy is) a mixture of metals		1
			OR		
			(an alloy is) a mixture of a metal and another metal	ALLOW (an alloy is) a mixture of a metal and carbon	
				REJECT references to compounds / combining of metals	
		(ii)	M1 the regular arrangement of atoms is distorted / disrupted / disturbed OWTTE	ALLOW lattice / layers / rows of atoms are disrupted / distorted / are less regular / are	2
			OR	irregular	
			carbon atoms are smaller than iron atoms / because iron atoms are larger than carbon atoms	ALLOW carbon and iron atoms are of different sizes	
				ALLOW the atoms are not the same size / the atoms are different sizes	
			M2 (therefore) it is more difficult for the atoms/layers to slide over one another	IGNORE references to the strength of metallic bonds	
					Total 6

	Quest numb		Answer	Notes	Marks
4	(a)	(i)	refinery gases: (fuel for) heating / cooking	ALLOW bottled gas	2
			bitumen: tar / road surfacing / road building / roofing	ALLOW roads	
		(ii)	any one from:		1
			refinery gases have the low(est) boiling point	ALLOW they are the most volatile	
			OR refinery gases do not condense in the column	REJECT refs to melting point	
		(iii)	it is heated / vaporised	IGNORE any temperatures given	1
				ALLOW boiled	
	(b)	(i)	M1 temperature 600 - 700°C	ALLOW any temperature in the range	2
			M2 catalyst alumina / silica / zeolites / aluminium oxide / silicon dioxide	IGNORE pressures	
		(ii)	an explanation containing any three of the following points:		3
			M1 alkenes / propene / C_3H_6 can be used to make (addition) polymers / plastics	ALLOW used to make poly(propene)	
				ALLOW to make alcohols / propanol	
			M2 (because) they have double bonds / are unsaturated	IGNORE used as fuels	
			$M3$ shorter alkanes / octane / C_8H_{18} are used as fuels / petrol		
			M4 (because) they have lower boiling points / are more flammable		
					Total 9

number	Answer	Notes	Marks
(a)	M1 mix / react the two solutions (together)	IGNORE volumes	4
		IGNORE heating at this stage	
		REJECT an indication that solids are mixed for M1	
	M2 filter (the solid lead bromide)		
	M3 wash (using deionised water)	IGNORE any washing before filtering	
	M4 method of drying	eg leave to dry / dry in an oven / leave in a warm place / dry with filter paper	
		REJECT direct heating of final product for M4	
		REJECT if solid is washed again after drying for M4	
		Methods of producing a soluble salt eg evaporating after mixing, leaving solutions in an evaporating basin scores M1 only	
(b)	M1 0.150 × 367 OR 55.05 g		2
	M2 (49.6 ÷ 55.05) × 100		
	OR		
	M1 (49.6 ÷ 367) OR 0.1351	ALLOW 0.135	
	M2 (0.1351 ÷ 0.150) x 100		
		ALLOW a final answer of 90% by either method	
		REJECT (49.6 ÷ 0.15) = 330.67 (330.67 ÷ 367) x 100 for both marks	
(c) (i)	all 6 points plotted ± half a square		1
(ii)	<u>straight</u> line of best fit ignoring the anomalous result at volume = 20 cm ³		1

(iii)	M1 the conductivity decreases (when the volume of lead(II) nitrate added increases)	IGNORE proportional /inversely proportional	2
		REJECT directly proportional	
		ACCEPT negative correlation between volume of lead(II) nitrate and electrical conductivity	
		ALLOW the conductivity increases when the volume of lead(II) nitrate decrease	
	M2 there are fewer ions in the mixture	ALLOW ions are being removed (as lead(II) bromide is formed)	
(iv)	the student forgot to stir the mixture	ALLOW the student didn't allow enough time for the reaction to take place before measuring conductivity	1
		REJECT the student added less / too little lead(iI) nitrate solution	
(v)	the conductivity would increase		1
(d)	electrons are lost (from bromide ions)	REJECT bromine / bromine ions lose electrons	1
			Total 13

Question number	Answer	Notes	Marks
6 (a)	M1 (electrostatic attraction between) positive ions	ACCEPT (electrostatic attraction between positive) nuclei of (metal) atoms	2
	M2 (and) <u>delocalised</u> electrons		
		REJECT any references to ionic bonding / sharing of electrons / intermolecular forces for both marks	
(b) (i)	(squeaky) pop with lighted splint/lit with a (Bunsen) flame	IGNORE just 'burns with a squeaky pop'	1
		REJECT use of glowing splint	
(ii)	any two from:		2
	M1 lilac / purple flame	ALLOW flame REJECT other colours	
	M2 potassium melts / turns into a ball		
	M3 potassium moves on the surface	ALLOW floats	
	M4 potassium gets smaller	ALLOW potassium disappears / dissolves	
		IGNORE fizzing / bubbles etc	
(c)	an explanation linking the following points:		3
	M1 lithium has fewer shells than potassium	ALLOW lithium has smaller atoms than potassium	
		ALLOW (outer shell) electron in lithium is closer to the nucleus	
		ALLOW correct electron configurations	
		REJECT 'fewer outer shells'	
	M2 <u>outer</u> shell / <u>outer</u> electron in lithium is more strongly attracted to the nucleus	ALLOW <u>outer</u> shell / <u>outer</u> electron in lithium is less shielded (by inner shells)	
		ACCEPT valence electron	
	M3 (so in lithium the outer shell) <u>electron</u> is less easily lost		
		ALLOW reverse argument throughout for potassium	

(d)	M1 (moles of sodium) 0.75 ÷ 23 OR 0.0326 moles		4
	M2 (moles of hydrogen) 0.0326 ÷ 2	ALLOW M1 ÷ 2	
	M3 (volume of hydrogen) 391.304 (cm ³)	ALLOW M2 × 24 000	
		REJECT incorrect rounding / use of 1SF once in M1 - M3	
	M4 391 (cm ³)	ALLOW M3 to 3 significant figures, provided some attempt at calculation	
		391 (cm ³) scores 4 marks	
		If M1 is rounded to 0.033 moles, final answer of 396 (cm ³) scores 4 marks	
		If M2 is absent, final answer of 782 / 783 (cm ³) scores 3 marks	
		If x 2 instead of ÷ 2 in M2 , final answer of 1560 (cm ³) scores 3 marks	
(e)	M1 (moles of sulfuric acid) (16.3 × 0.0500) ÷ 1000 OR 0.000815	ALLOW 8.15 x 10 ⁻⁴ (moles)	3
	M2 (moles of sodium hydroxide) = 0.00163	ALLOW M1 × 2	
	M3 0.0652 (mol/dm ³)	ALLOW M2 ÷ 0.025	
		0.0652 (mol/dm³) scores 3 marks	
		ALLOW any SF except 1SF	
		If M2 is absent, final answer of 0.0326 (mol/dm ³) scores 2 marks	
		If ÷ 2 instead of x 2 in M2 , final answer of 0.0163 (mol/dm ³) scores 2 marks	
		REJECT 16.3 / 25.0 = 0.652 (mol/dm ³) for all 3 marks	
			Total 15

Answer	Notes	Marks
M1 the forward and reverse reactions occur at the same <u>rate</u>		2
M2 so the concentrations of reactants and products remain constant	ALLOW so the moles of reactants and products remain constant	
	REJECT so the concentrations of reactants and products are the same	
a catalyst increases the rate of (both) the forwards and the reverse reaction <u>equally</u>	ALLOW has the same effect on the rate of forward and reverse reaction	1
M1 yield increases		2
M2 the (forward) reaction is exothermic	ALLOW the reverse reaction is endothermic	
	IGNORE any references to Le Chatelier's Principle (moves / shifts)	
	M2 dep on M1 correct or missing	
M1 yield increases		2
M2 there are more moles of (gaseous) reactants than products / there are fewer (gaseous) moles on the right hand side / there are 3 moles (of gas) on the left and 1 mole (of gas) on the right ORA	IGNORE any references to Le Chatelier's Principle (moves /shifts)	
	 M1 the forward and reverse reactions occur at the same <u>rate</u> M2 so the concentrations of reactants and products remain constant a catalyst increases the rate of (both) the forwards and the reverse reaction <u>equally</u> M1 yield increases M2 the (forward) reaction is exothermic M1 yield increases M2 there are more moles of (gaseous) reactants than products / there are fewer (gaseous) moles on the right hand side / there are 3 moles (of 	M1 the forward and reverse reactions occur at the same rateALLOW so the moles of reactants and products remain constantM2 so the concentrations of reactants and products remain constantALLOW so the moles of reactants and products remain constanta catalyst increases the rate of (both) the forwards and the reverse reaction equallyALLOW has the same effect on the rate of forward and reverse reactionM1 yield increasesALLOW the reverse reaction is endothermicM2 the (forward) reaction is exothermicALLOW the reverse reaction is endothermicM1 yield increasesALLOW the reverse reaction is endothermicM1 yield increasesM2 dep on M1 correct or missingM1 yield increasesM2 dep on M1 correct or missingM1 yield increasesIGNORE any references to Le Chatelier's Principle (moves / shifts)M2 there are more moles of (gaseous) reactants than products / there are fewer (gaseous) moles on the right hand side / there are 3 moles (of gas) on the left and 1 mole (of gas) on the right

(b) (i)	M1 (bonds broken) = 436 + 436 + 1072 OR 1944		3
	M2 (bonds formed) = 414 + 414 + 414 + 358 + 463 OR 2063		
	M3 1944 - 2063 (= - 119)		
(ii)	an explanation that links together the following two points:		2
	M1 more energy is given out when the bonds are made	IGNORE refs to numbers of bonds	
	M2 than is taken in when the bonds are broken ORA		
	OR		
	M1 breaking bonds is endothermic / takes in energy AND making bonds is exothermic / releases energy		
	M2 the energy released is more than the energy taken in	DEP on M1	
		If state / imply that energy required to make bonds	
		OR If state / imply that energy released when bonds are broken scores 0	
(c) (i)	$\begin{array}{c} \mu & \mu \\ 1 & \mu \\ \mu - C - C - C \\ \mu \\$		1
(ii)	H H H O O O O O O O O O O O O O O O O O	REJECT -OH not displayed	1
			Total 14

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom