Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9–1)

PHYSICS

Paper 4 Theory (Extended) MARK SCHEME Maximum Mark: 80 0972/04 For Examination from 2018

Specimen

From 2018 the mark scheme design/layout has improved. The content and marks remain the same.

This document consists of 6 printed pages.

mark scheme abbreviations

- () the word, phrase or unit in brackets is not required but is in the mark scheme for clarification
- accept accept the response
- AND both responses are necessary for the mark to be allowed
- c.a.o. correct answer only
- e.c.f. error carried forward; marks are awarded if a candidate has carried an incorrect value forward from earlier working, provided the subsequent working is correct
- ignore this response is to be disregarded and does not negate an otherwise correct response
- NOT do not allow
- note: additional marking guidance
- / OR alternative responses for the same marking point
- owtte or words to that effect
- <u>underline</u> mark is not allowed unless the underlined word or idea is used by candidate
- units there is a maximum of one unit penalty per question unless otherwise indicated

any [number] from: accept the [number] of valid responses

max indicates the maximum number of marks

1	(a)	speed × time in any form, symbols, numbers or words OR any area under graph used or stated 13 (m/s) OR 24 (s) seen or used in correct context 312 m (2 or 3 sig. figs.)	[1] [1] [1]
	(b)	rate of change of speed OR gradient of graph OR 18/12 18 (m/s) OR 12 (s) seen or used in correct context 1.5 m/s²	[1] [1] [1]
	(c)	same gradient / slope OR equal speed changes in equal times OR allow graph symmetrical	[1]
2	(a)	<i>mgh</i> OR 36 × 10 × 2.4 864 J OR Nm (2 or 3 sig. figs.)	[1] [1]
	(b)	(<i>P</i> =) <i>E</i> / <i>t</i> in any form, words, symbols or numbers OR 864 / 4.4 196 W OR J/s (2 or 3 sig. figs.)	[1] [1]
	(c)	evidence that candidate understands the principle of energy conservation, expressed in words or as an equation (e.g. total energy is constant OR initial energy = final energy) or implied by statement accounting for difference	[1]
		some energy is dissipated into the surroundings OR difference due to increase in internal energy/heating/thermal energy (of belt, motor, surroundings) owtte note: do not accept kinetic energy / sound / friction if no mention of heating	[1]
	(d)	increase in potential energy of mass is greater OR work done/energy used (to raise mass) is greater t = E/P OR $P = E/t$ in any form, words or symbols AND power is constant speed reduced / time taken is longer	[1] [1] [1]
3	(a)	<i>p</i> = <i>mv</i> in any form, words or symbols 0.16kgm/s OR Ns	[1] [1]
	(b)	use of principle of conservation of momentum in words, symbols or numbers use of combined mass $0.5(0) + 0.3(0)$ OR $0.8(0)$ (kg) $0.2(0)$ m/s	[1] [1] [1]

4	(a)	thre	ee valid features listed without explanation	[1]
		any	<i>i</i> three features <u>explained</u> from:	
		-	oper/metal is a <u>good</u> conductor (of heat) T of electricity	
			ck is <u>good</u> absorber/ <u>bad</u> reflector ore emitter	
			ulating material will <u>reduce</u> heat lost/conducted away (from pipes/sheet) T <u>prevents</u> heat loss owtte	
		gla	ss/trapping of air reduces/prevents convection/warm air being blown away	
		gla	ss produces greenhouse effect/reference to far and near I.R.	[max 3]
	(b)	<i>mc</i> 2.3 9.2	- 16 OR 22 θ OR 250 × 4200 × candidate's temperature difference 1 × 10 ⁷ (J) e.c.f. from previous line 4 × 10 ⁷ J OR e.c.f. from previous line × 4 correctly evaluated unit penalty if J seen anywhere in (b) clearly applied to an energy	[1] [1] [1] [1]
	(c)		d <u>explanation</u> relating to at least one of the reasons below: e: if no explanation, this mark is not awarded even if more than three reasons en	[1] are
		any three reasons from: which direction roof faces estimate output of panels household needs / whether household will use all hot water cost of panel / installation time to recoup cost whether roof is shaded relevant environmental consideration (e.g. not using wood or other fuel to heat water) [max		
	(d)		clei join together, accept hydrogen for nuclei produce a different element / helium (and energy)	[2]
5	(a)	(i)	any one from: (molecules) move randomly / in random directions (molecules) have high speeds	
			(molecules) collide with each other / with walls	[max 1]
		(ii)	collisions with walls/rebounding causes change in momentum (of molecules) force is rate of change of momentum / force needed to change momentum	[1] [1]
	(b)	(i)	$p_1V_1 = p_2V_2 \text{ OR } 300 \times 100 (\times 0.12) = p_2 \times 0.40 (\times 0.12)$	[1]
			750 kPa	[1]

		 (ii) (molecules) collide with walls more often owtte OR more collisions with walls per second or per unit time owtte greater force per unit area 	[1] [1]
6	(a)	clear attempt at semi circles, at least 3 same wavelength as incoming wavefronts, by eye	[1] [1]
	(b)	speed \div wavelength or 20 \div 2.5 or $v = f\lambda$ 8 Hz or 8 s ⁻¹ or 8 waves/second	[1] [1]
	(c)	candidate's (b) OR "the same" OR nothing	[1]
	(d)	low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength	[1]
		low frequency signals / long wavelength signals diffract more OR low frequency / short wavelength signals diffract less	[1]
7	(a)	rheostat/ <u>variable</u> resistor AND control/vary/change/ limit the current /resistance/power/ voltage <u>across heater</u>	[1]
	(b)	(I =) P/V any form, words or numbers (I =) 1.25 (A) seen anywhere (V =) 6.0 - 3.6 OR 2.4 seen anywhere (R =) V/I in any form words or numbers 1.92 Ω (2 or 3 sig. figs.) note: credit will also be given for alternative approaches	[1] [1] [1] [1] [1]
	(c)	battery running down/going flat/energy <u>of battery</u> used up OR V or e.m.f. less OR more/increasing resistance (of heater) NOT resistance of X increases use of relationship between I and V or R OR the current decreases	[1] [1]
8	(a)	output of A: 1, 1, 0, 0 c.a.o. output of B: 0, 1, 0, 0 e.c.f. from candidate's output of A	[1] [1]
	(b)	dark AND hot owtte note: must be consistent with answer to (a)	[1]
	(c)	B cannot provide enough power / current for lamp, or equivalent OR allows remote lamp note: statement of function of a relay without reference to context gains 1 mark	[2]

9	(a)	electrons / negative charges <u>move</u> towards the rod / to R (ignore just "attracted") ignore any mention of positive charges moving	
		any mention of positive electrons = 0	[1]
	(b)	negative charges (are) close(r) (to the rod) attraction between opposite charges greater than repulsion between like charges	[1] [1]
	(c)	coulomb	[1]
10	(γ ra cha β pa refe	ays ays) detected at B ays) not deflected by field / not charged arged particles / β particles (accept α for charged particles) articles detected at C erence to direction of deflection / LH rule α -particles OR only background detected at A	[1] [1] [1] [1] [1] [1]
11	(a)	top bent down to R of layer middle straight on bottom deflected back to left	[1] [1] [1]
	(b)	(i) deflection greater than 90°/the bottom one	[1]
		(ii) positive ignore numbers	[1]
		(iii) nothing/vacuum/space/electrons	[1]
	(c)	2 AND 2	[1]

6