

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*	CHEMISTRY		0620/04
1 2 3	Paper 4 Theory	/ (Extended)	For Examination from 2016
4 5	SPECIMEN PA	PER	
			1 hour 15 minutes
8	Candidates ans	wer on the Question Paper.	
°,	No Additional M	laterials are required.	

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is accredited for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 18 printed pages and 2 blank pages.

substance	melting point / °C	boiling point / °C	electrical conductivity as a solid	electrical conductivity as a liquid
Α	839	1484	good	good
В	-188	-42	poor	poor
С	776	1497	poor	good
D	-117	78	poor	poor
E	1607	2227	poor	poor
F	-5	102	poor	good

1 The following table gives information about six substances.

(a) Which substance could be a metal?

(b) State all the substances that are liquid at room temperature?
(c) Which substance could have a macromolecular structure similar to that of silicon(IV) oxide?
(d) Which substance could be propane?
(e) Which substance could be sodium chloride?
(f)

2 The table gives the composition of three particles.

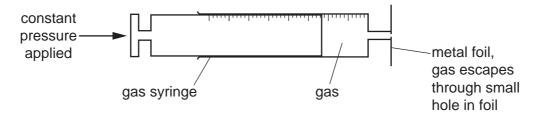
particle	number of protons	number of electrons	number of neutrons
Α	15	15	16
В	15	18	16
С	15	15	17

- (a) What is the evidence in the table for each of the following?
 - (i) Particle A is an atom.

(ii) A, B and C are all particles of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Particles A and C are isotopes of the same element.
(iii) Is element A, a metal or a non-metal? Give a reason for your choice.
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

- **3** Kinetic theory explains the properties of matter in terms of the arrangement and movement of particles.
 - (a) Nitrogen is a gas at room temperature. Nitrogen molecules, N₂, are spread far apart and move in a random manner at high speed.
 - (i) Draw the electronic structure of a nitrogen molecule. Show only the outer electron shells.

[2]


(ii) Compare the movement and arrangement of the molecules in solid nitrogen to those in nitrogen gas.

[3]

(b) A sealed container contains nitrogen gas. The pressure of the gas is due to the molecules of the gas hitting the walls of the container. Use the kinetic theory to explain why the pressure inside the container increases when the temperature is increased.

[2]

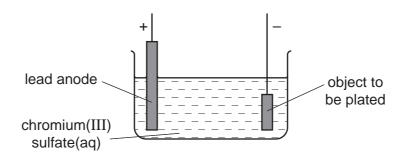
The following apparatus can be used to measure the rate of diffusion of a gas.

The following results were obtained.

gas	temperature /°C	rate of diffusion in cm ³ /min
nitrogen	25	1.00
chlorine	25	0.63
nitrogen	50	1.05

(c) (i) Explain why nitrogen gas diffuses faster than chlorine gas.

[2]
 (ii) Explain why the nitrogen gas diffuses faster at the higher temperature.
 [1]
 [Total: 10]


- 4 Chromium is a transition element.
 - (a) (i) State two differences in the physical properties of chromium and sodium.

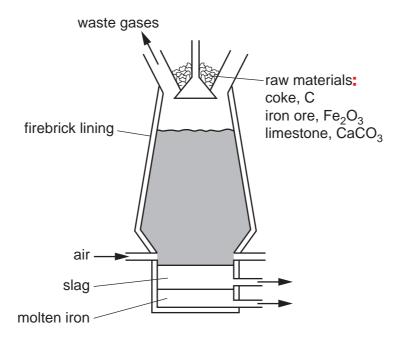
[2]

(ii) State **two** differences in the chemical properties of chromium and sodium.

[2]

(b) Chromium is used to electroplate steel objects. The diagram shows how this could be done.

(i) Give two reasons why steel objects are plated with chromium.


[2]
(ii) The formula of the chromium(III) ion is Cr³⁺ and of the sulfate ion is SO₄²⁻. Give the formula of chromium(III) sulfate.
[1]
(iii) Write the ionic half-equation for the reaction at the negative electrode (cathode).
[2]
(iv) A colourless gas, which relights a glowing splint, is formed at the positive electrode (anode).
State the name of this gas.
[1]

(v) During electroplating, it is necessary to add more chromium(III) sulfate but during copper plating using a copper anode, it is not necessary to add more copper(II) sulfate.

Explain this difference.

[2	2]
[Total: 12	2]

5 Iron is extracted from its ore, hematite, in the blast furnace.

Describe the reactions involved in this extraction.

Include one equation for a redox reaction and one for an acid/base reaction.

•••••	•••••	 	•••••	 	•••••	 	 •••••	 			•••••	•••••
		 •••••		 •••••		 •••••	 •••••	 •••••	•••••	•••••		•••••
•••••		 	•••••	 	•••••	 •••••	 •••••	 				•••••
												[5]
											гт	otal: 5]
											[10	Jiai. 0]

9

BLANK PAGE

- 6 Soluble salts can be made using a base and an acid.
 - (a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate.

step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.

step 2 step 3 step 4 [4]

(b) (i) 5.95g of cobalt(II) carbonate were added to 40 cm^3 of hydrochloric acid, concentration 2.0 mol/dm^3 .

Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess.

 $CoCO_3$ + 2HC $l \rightarrow CoCl_2$ + CO₂ + H₂O

 $CoCl_2$ + $6H_2O \rightarrow CoCl_2.6H_2O$

maximum yield:

	number of moles of HC <i>l</i> used =
	number of moles of CoCl ₂ formed =
	number of moles of $CoCl_2.6H_2O$ formed =
	mass of one mole of $CoC l_2.6H_2O = 238 g$
	maximum yield of CoCl ₂ .6H ₂ O =g
	to show that cobalt(II) carbonate is in excess:
	number of moles of HC <i>l</i> used = (use your value from above)
	mass of one mole of $CoCO_3 = 119g$
	number of moles of $CoCO_3$ in 5.95g of cobalt(II) carbonate =[5]
(ii)	Explain how these calculations show that cobalt(II) carbonate is in excess.
	[1]
	[Total: 10]

7 Iodine reacts with chlorine to form dark brown iodine monochloride.

 $I_2 \ \textbf{+} \ \mathsf{C}\mathit{l}_2 \ \rightarrow \ \mathsf{2IC}\mathit{l}$

This reacts with more chlorine to give yellow iodine trichloride. An equilibrium forms between these iodine chlorides.

> $ICl(I) + Cl_2(g) \rightleftharpoons ICl_3(s)$ dark brown yellow

- (a) What do you understand by the term *equilibrium*?
 - [2]
- (b) When the equilibrium mixture is heated, it becomes a darker brown colour. Suggest if the reverse reaction is endothermic or exothermic. Give a reason for your choice.

[1]

(c) The pressure on the equilibrium mixture is decreased.

(i) How would this affect the position of equilibrium? Give a reason for your choice.

	It would move to the		
	reason		
			[1]
(ii)	Describe what you wo	uld observe.	

[1]

(d) Calculate the overall energy change for the reaction between iodine and chlorine using the bond energy values shown.

208

I ₂	+ $Cl_2 \rightarrow 2ICl$
Bond	Energy / kJ per mol
I−I C <i>l</i> −C <i>l</i>	151 242

I-Cl

Show your working.

[3]

(e) Draw a labelled energy level diagram for the reaction between iodine and chlorine using the information in (d).

[2]

[Total: 10]

- 8 The alcohols form an homologous series.
 - (a) Give three characteristics of an homologous series.

[3]

(b) The following two alcohols are members of an homologous series and they are isomers.

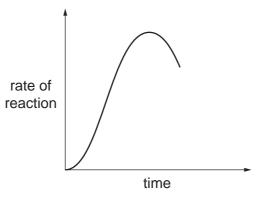
 $\mathsf{CH}_3-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{OH} \ \text{and} \ (\mathsf{CH}_3)_2\mathsf{CH}-\mathsf{CH}_2-\mathsf{OH}$

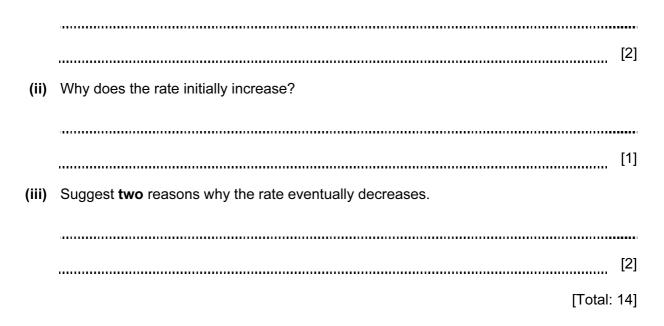

(i) Explain why they are isomers.

[2]

(ii) Deduce the structural formula of another alcohol which is also an isomer of these alcohols.

[1]


(c) Copper(II) oxide can oxidise butanol to liquid \mathbf{X} , whose pH is 4.


(d) The alcohol ethanol can be made by fermentation. Yeast is added to aqueous glucose.

 $C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$

Carbon dioxide is given off and the mixture becomes warm, as the reaction is exothermic. The graph shows how the rate of reaction varies over several days.

(i) Suggest a method of measuring the rate of this reaction.

BLANK PAGE

- **9** There are two types of polymerisation, addition and condensation.
 - (a) Explain the difference between these two types of polymerisation.

[2]

(b) Some plastics, formed by polymerisation, are non-biodegradable.

Describe two pollution problems that are caused by non-biodegradable plastics.

[2]

(c) The polymer known as PVA is used in paints and adhesives. Its structural formula is shown below.

--CH₂--CH---CH₂--CH--| | | OCOCH₃ OCOCH₃

Deduce the structural formula of its monomer.

[1]

(d) A condensation polymer can be made from the following monomers.

HOOC(CH₂)₄COOH and H₂N(CH₂)₆NH₂

Draw the structural formula of this polymer.

[3]

[Total: 8]

								Group	dn								
_	=								-			≡	N	>	N	NII V	VIII
							-										2
							т										He
				Key			hydrogen 1										helium 4
<i>с</i> о	4	_	at	atomic number	e L	1						5	9	7	∞	6	10
E	Be		ato	atomic symbol	bol							В	U	z	0	ш	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	6		relati	relative atomic mass	nass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Ρl	Si	٩.	ა	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	F	>	ບັ	Mn	Fe	ပိ	ïŻ	Cu	Zn	Ga	Ge	As	Se	Br	К г
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	gernanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52	53	54
Rb	S	≻	Zr		Mo	Чс	Ru	Rh	Pd	Ag	РÜ	In	Sn	Sb	Те	Ι	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
8	88	68	91	93	96 1	1	101	103	106	108	112	115	117	122	128	127	131
55	56	57-71	72	73	74	75	9/	11	78	6/	80	81	82	83	84	85	86
ပိ	Ва	lanthanoids	Ŧ	Та	\geq	Re	So	Ir	Ъ	Au	Нg	11	Рb	Ē	Ро	At	Rn
caesium	barium		hafnium	tantalum	tungsten	thenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	13/		1/8	181	184	186	190	192	195	19/	201	204	207	209	1	а.	i I
87	88	89-103	104	105	106	107	108	109	110	111	112		114		116		
Ľ	Ra	actinoids	ች		Sg	Bh	Hs	Mt	Ds	Rg	ő		F1		Ľ		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium I	roentgenium	copernicium		flerovium	~	livernorium		
I	1		1	1	1	1	3	1	1	1	1		Ŭ		1		
		57	20	50	SO .	64	67	60	54		20	67	00	00	04	12	
1	-	5 _	3	3 2				3 1	5 7		3	5 =	3 L	3 F	2		
laninanolus	SD	La	Ce	TT minuboo	nu	PIII promothium	ollo more	Eu auronium	Gu		uy damanim	0 D D D D D	П mite		T D	Lu	
		139	140	141			150	152	157		163	165	167	169	173	175	
		89	90	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра		Np	Pu	Am	Cm		Ç	Es	Fm	pM	No	5	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	-	californium	. <u>_</u>	fermium	mendelevium	nobelium	awrencium	
		Ũ	232	231	238	Ľ	Ľ	Ľ	t	В	C	Ū	t	Ū.	Ē	ţ	
The volu	me of on	The volume of one mole of any gas is 24 ${ m dm}^3$ at room	any gas	is 24 dm ³		temperature and pressure (r.t.p.)	rre and p	ressure (r.t.p.)								

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

PMT

20