

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 Theory (Core)

February/March 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

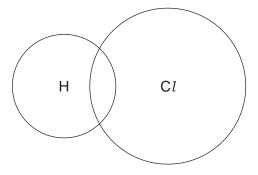
INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) A list of compounds is shown.

aluminium oxide
calcium bromide
calcium oxide
ethane
ethene
hydrogen chloride
methane
nitrogen dioxide
potassium iodide
potassium manganate(VII)
sodium chloride

Answer the following questions using only the compounds in the list. Each compound may be used once, more than once or not at all.

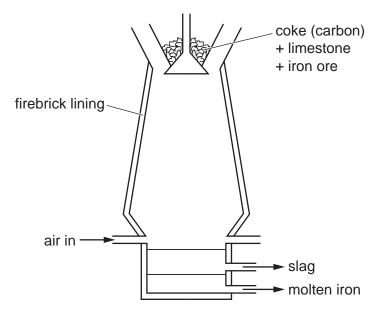

Which compound:

(b)

(i)	when in acidified solution, is used to test for sulfur dioxide	
		[1]
(ii)	is the main constituent of natural gas	
		[1]
(iii)	when dissolved in water, gives a yellow precipitate on addition of acidified aqued silver nitrate	ous
		[1]
(iv)	is used in flue gas desulfurisation to neutralise acidic gases	
		[1]
(v)	is a reactant used in the manufacture of ethanol?	
		[1]
Wh	nat is the meaning of the term compound?	
		[0]

(c) Complete the electronic structure of a molecule of hydrogen chloride.

Show only the outer shell electrons.



[2]

[Total: 9]

2 Iron is extracted by heating a mixture of coke (carbon), limestone and iron ore in air in a blast furnace.

A diagram of the blast furnace is shown.

(a)	Nar	me the ore of iron added to the blast furnace.	
			[1]
(b)	The	e impurities in the iron ore are removed as slag.	
	(i)	What information in the diagram shows that slag is less dense than molten iron?	
			[1]
	(ii)	Which one of the substances added to the blast furnace helps to remove the impurities	s?
		Explain how it does this.	
		substance	
		explanation	
			 [3]
(c)	Hot	air is blown into the blast furnace.	
	Exp	plain why.	
			[1]

(d)	The	chemical equation for one of the reactions in the blast furnace is shown.	
		$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	
	(i)	How does this equation show that Fe ₂ O ₃ has been reduced?	
			[1]
	(ii)	When 16.0 g of Fe_2O_3 react with excess carbon monoxide, 11.2 g of iron are produced.	
		Calculate the mass of iron produced when $4.0\mathrm{g}$ of $\mathrm{Fe_2O_3}$ react with excess carbon monoxides $\mathrm{Fe_2O_3}$ react $\mathrm{Fe_2O_3}$	de.
			F4 1
		mass of iron = g	[1]
(e)	An	sotope of iron is shown.	
		⁵⁸ Fe	
	Dec	duce the number of electrons, protons and neutrons in an atom of this isotope of iron.	
	nun	nber of electrons	
	nun	nber of protons	
	nun	nber of neutrons	
			[3]
(f)	Iror	is a transition element.	
	Wh	ch two of these statements about iron are correct?	
	Tick	a two boxes.	
		Iron forms coloured compounds.	
		Iron can act as a catalyst.	
		Iron is brown when freshly cut.	
		Iron has a low density.	
		Iron has a low melting point.	
		- · ·	[2]
		[Total: '	13]

Wa	ter is essential for many industrial processes.	
(a)	State one use of water in industry.	
		[1]
/b\	What is the pH of pure water?	
(a)	What is the pH of pure water?	
	Draw a circle around the correct answer.	
	pH 0 pH 6 pH 7 pH 14	[1]
(c)	Filtration and chlorination are two of the steps used in water treatment.	
	Describe the purpose of each of these steps.	
	filtration	
	chlorination	
		[2]
(d)		
	ice water steam	
	freezing	
	Give the names of the changes of state represented by A and B .	
	A	
	В	
		[2]

(e) The table compares the reactions of four metals with both steam and dilute hydrochloric acid.

metal	reaction with steam at 200 °C	observation with dilute hydrochloric acid
copper	no reaction	no bubbles formed
magnesium	rapid reaction	bubbles form rapidly
nickel	no reaction	bubbles form slowly
zinc	rapid reaction	bubbles form slowly

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive		most reactive	
			[2]

[Total: 8]

4 Angelic acid and ethanoic acid are both carboxylic acids.

The structure of angelic acid is shown.

- (a) (i) On the structure of angelic acid, draw a circle around the functional group that shows that it is a carboxylic acid. [1]
 - (ii) Deduce the formula of angelic acid to show the number of carbon, hydrogen and oxygen atoms.

.....[1]

(iii) Angelic acid is an unsaturated compound.

Describe a chemical test to distinguish between an unsaturated and a saturated compound.

test

result with unsaturated compound

result with saturated compound

(b) The formula of ethanoic acid is $C_2H_4O_2$.

Complete the table to calculate the relative molecular mass of ethanoic acid.

Use the Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
carbon	2	12	2 × 12 = 24
hydrogen			
oxygen		16	

relative molecular mass =

[2]

[3]

(c) Ethanoic acid can be reduced to ethanol.

Complete the structure of ethanol to show all of the atoms and all of the bonds.

[1]

(d) Ethanol can be manufactured by fermentation.

Describe the process of fermentation to include:

Describe the process of fermentation to include.
the names of the reactants and catalyst
the conditions required
• the name of the process used to separate the ethanol from the rest of the reaction mixture.
[4]

[Total: 12]

5 The table shows some properties of four metals in Group I of the Periodic Table.

metal	melting point /°C	boiling point /°C	relative electrical conductivity
sodium	98	883	
potassium	63	760	14
rubidium		686	8
caesium	29	669	5

((a)	Com	olete	the	table	to	estimate:
١			PICIC	uic	labic	w	Commate.

- the melting point of rubidium
- the relative electrical conductivity of sodium.

[2] **(b)** What is the physical state of caesium at 20°C? Give a reason for your answer.[2] **(c)** Describe the trend in the boiling points of the Group I metals.[1] (d) When potassium reacts with water, a coloured flame is seen and a gas is produced that pops with a lighted splint. (i) Complete the chemical equation for this reaction.K + $2H_2O \rightarrow 2KOH +$ [2] State the colour of the flame when potassium reacts with water. (ii) (iii) The solution formed is alkaline. Describe how you can use universal indicator solution to determine the pH of the solution.[2]

0620/32/F/M/20

[Total: 10]

© UCLES 2020

6	This que	estion is about the r	stion is about the reactions of magnesium with nitric acid.							
	(a) The	e equation for the re	action of n	nagnesium	with concen	trated nitric aci	d is shown.			
		Mg	+ 4HNO ₃	\rightarrow Mg(N	$O_3)_2 + 2NO_2$	+ 2H ₂ O				
	(i)	The reaction is exc	othermic.							
		What is the meaning of the term exothermic?								
		[1]								
	(ii)	Which word best describes the compound Mg(NO ₃) ₂ ?								
		Draw a circle arou	nd the cori	ect answe	er.					
			acid	base	oxide	salt		[1]		
	(iii)	Oxides of nitrogen	are forme	d when fos	ssil fuels are	burned.				
		What type of chem	nical reaction	on occurs	when fossil fu	uels are burned	?			
		Draw a circle arou	nd the cori	ect answe	er.					
		combustion	cracki	ng fe	ermentation	neutralis	sation	[1]		
	(iv)	Oxides of nitrogen	dissolve in	n rain wate	er to form acid	d rain.				

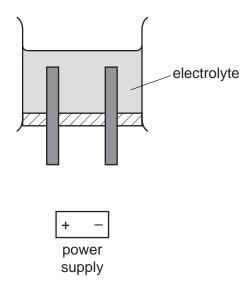
(b) When very dilute nitric acid reacts with magnesium powder, hydrogen is produced.

State **one** adverse effect of acid rain on buildings.

(i)

Describe a practical method for investigating the rate of this reaction.	
	[3

(ii)	What effect would each of the following have on the rate of this reaction?	
	Larger pieces of magnesium are used instead of magnesium powder.	
	All other conditions stay the same.	
	The temperature of the reaction mixture is increased.	
	All other conditions stay the same.	
		[2]

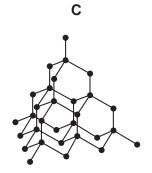

[Total: 9]

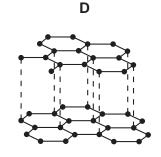
[3]

[2]

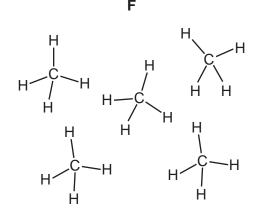
	7 ((a)	The electrol	ysis of dilute	e sulfuric acid	produces g	ases at both	electrodes
--	-----	-----	--------------	----------------	-----------------	------------	--------------	------------

(i) The incomplete apparatus is shown.


Complete the diagram by:


- labelling the anode and cathode
- adding connecting wires
- showing how the gases are collected.

observations


(d)	Carbon dioxide is a greenhouse gas.
	State one effect of greenhouse gases on the environment.
	[1]
	[Total: 10]

8 (a) The structures of four substances C, D, E and F, are shown.

 $\begin{array}{c|c} \textbf{E} \\ \hline (Na^+) & Cl^- & Na^+) & Cl^- \\ \hline (Cl^-) & Na^+) & Cl^- & Na^+) & Cl^- \\ \hline (Cl^-) & Na^+) & Cl^- & Na^+) & C$

(i) Which one of these substances, C, D, E or F, is a gas at room temperature?

[1]

(ii) What type of bonding is present in substance E?

[1]

(iii) Which one of these substances, C, D, E or F, is soluble in water?

[1]

(iv) Which one of these substances, C, D, E or F, conducts electricity when solid?

[1]

(b) The halogens have molecules containing two atoms.

......[1]

What is the name for molecules containing only two atoms?

(c)	The	e reaction of iodine with hydrogen is shown.	
		$I_2 + H_2 \rightleftharpoons 2HI$	
	Wh	at is the meaning of the symbol ← ?	
			[1]
(d)	lodi	ine is formed when chlorine reacts with aqueous potassium iodide.	
	(i)	Complete the chemical equation for this reaction.	
		+ 2KI \rightarrow I ₂ +KC1	[2]
	(ii)	When aqueous iodine is mixed with aqueous potassium chloride, there is no reaction.	
		Suggest, in terms of chemical reactivity, why there is no reaction.	
			[1]
		[Total:	: 9]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	\equiv	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Ι	iodine 127	85	Ą	astatine -			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	moloulum -	116		livermorium -
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Bi	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	F1	flerovium –
	≡			5	Ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	р О	cadmium 112	80	Hg	mercury 201	112	S	copernicium
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
<u>5</u>										27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ľ	indium 192	109	Ĭ	meitnerium -
		- エ	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				١	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	4	g	niobium 93	73	<u>Б</u>	tantalum 181	105	op O	dubnium -
					atc	rel				22	ı	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿒	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ва	barium 137	88	Ra	radium
	_			8	<u>-</u>	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	占	francium

Lu Lu	lutetium 175	103	۲	lawrencium —
° 4	ytterbium 173	102	å	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium –
es Er	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
e6 Dy	dysprosium 163	86	ర	californium -
e5 Tb	terbium 159	26	Æ	berkelium –
Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pu	plutoni um —
Pm	promethium –	93	ď	neptunium –
	neodymium 144		\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).