

Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 Theory (Core) May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

[Total: 6]

1 Fig. 1.1 shows part of the Periodic Table.

- 1	Ш						Ш	IV	V	VI	VII	VIII
Li								С	N	0	F	
							Αl					Ar
	Ca		Cr	Fe		Cu					Br	
											Ι	

Fig. 1.1

Answer the following questions using only the elements in Fig. 1.1. Each symbol of the element may be used once, more than once or not at all.

Give the symbol of the element that:

(a)	is present in diamond	[1]
(b)	forms an oxide that contributes to acid rain	
(c)	has an atom with five occupied electron shells	[1]
(d)	forms an ion with a charge of 1+	[1]
(0)	forms an ion that gives a red brown precipitate an addition of equation armonic	[1]
(e)	forms an ion that gives a red-brown precipitate on addition of aqueous ammonia	[1]
(f)	is used in the manufacture of aircraft because of its low density.	[1]

2 (a) Table 2.1 shows some properties of the halogens.

Table 2.1

halogen	melting point in °C	boiling point in °C	density at room temperature and pressure in g/cm³
fluorine	-220	-188	
chlorine	-101		0.003
bromine	-7	+59	3.12
iodine	+114	+184	4.93

Use the information in Table 2.1 to predict:

(i)	the boiling point of chlorine	[1
(ii)	the density of fluorine at room temperature and pressure	[1
iii)	the physical state of iodine at +100 °C. Give a reason for your answer.	
	physical statephysical state	
	reason	

- (b) Aqueous chlorine reacts with aqueous sodium bromide.
 - (i) Complete the word equation for this reaction.

[2]

[2]

(ii) State a test for sodium ions.

observations

[Total: 8]

[2]

2	2			
(ii) S	State why sewage can cause	disease.		
(b) Table	e 3.1 shows the masses of ior	ıs, in mg, pres	ent in 1000 cm ³ of pollut	ed water.
		Table 3.1		
	name of ion	formula of ion	mass of ion present in mg/1000 cm ³ of polluted water	
	ammonium	NH ₄ ⁺	1.2	
	calcium	Ca ²⁺	2.2	
	chloride	Cl-	2.5	
	hydrogencarbonate	HCO ₃ -	13.0	
	magnesium	Mg ²⁺	1.0	
	nickel(II)	Ni ²⁺	0.2	
	nitrate	NO ₃ -	0.4	
	potassium	K ⁺	6.3	
	silicate	SiO ₃ ²⁻	8.0	
	sodium	Na⁺	12.2	
		SO ₄ ²⁻	0.1	
Answ	ver these questions using info	rmation from	Table 3.1.	
(i)	Name the positive ion present	in the lowest	concentration	
(')				
(ii) S	State the name of the ion SO_4	2		

© UCLES 2023 0620/33/M/J/23

mass = mg [1]

(c) (Cobalt(II)	chloride can	be used to	test for the	presence o	f water
-------	------------	--------------	------------	--------------	------------	---------

$$CoCl_2(s) + 6H_2O(l) \rightleftharpoons CoCl_2 \cdot 6H_2O(s)$$

blue cobalt(II) pink cobalt(II)
chloride chloride

(1)	Describe now pink cobalt(II) chloride can be changed to blue cobalt(II) chloride.	
		[1

(ii) Choose a word from the list which best describes pink cobalt(II) chloride.

Draw a circle around your chosen answer.

(d) Iron reacts with steam to form Fe_3O_4 and a gas which pops with a lighted splint.

Complete the symbol equation for this reaction.

$$3Fe +H_2O \rightarrow Fe_3O_4 + 4.....$$
 [2]

[Total: 10]

4	This o	auestion	is	about	bromine	and	comi	oounds	of	bromi	ne
_	11110	quodiloii		aboat		alla	COIII	Douilad	\circ		110

81₃₅Br-

number of protons	
number of neutrons	
number of electrons	13

(b) Hydrogen bromide decomposes to hydrogen and bromine when heated.

Fig. 4.1 shows an incomplete reaction pathway diagram for this reaction.

Fig. 4.1

(i) Complete Fig. 4.1 by writing these formulae on the diagram:

• 2HBr

•
$$H_2 + Br_2$$
. [1]

(ii) Explain how Fig. 4.1 shows that the reaction is endothermic.

[1]

(iii) Complete this sentence about an endothermic reaction using a word from the list.

(c) Hy	(c) Hydrobromic acid is formed when hydrogen bromide dissolves in water.							
(i)	(i) Write the formula of the ion which is present in all acids.							
(ii)	Comp	olete the word	equa	tion for the reaction	on of a	any acid with any	carboı	nate.
acid	+	carbonate	\rightarrow		+		+	
			I		I		J	[3]
(iii)	A few	drops of litmu	us ind	icator are added t	o a di	lute acid.		
	State the colour of the solution.							
								[1]

(d) Fig. 4.2 shows the apparatus used for the electrolysis of molten lead(II) bromide using graphite electrodes.

Fig. 4.2

- (i) Label Fig. 4.2 to show:
 - the cathodethe electrolyte

• t	he electrolyte.	[2]
-----	-----------------	-----

(ii)	Name the products and state the observations at the positive and negative electrodes	
	product at the positive electrode	
	observations at the positive electrode	
	product at the negative electrode	
	observations at the negative electrode	
		[4]
(iii)	State one property of graphite that makes it useful as an electrode.	
		[1]

[Total: 18]

5	This	question	is	about	metals
_		90.00			

(a)	Nickel is a transition element. Sodium is an element in Group I of the Periodic Table.			
	State two differences in the physical properties of nickel compared to sodium.			
	1			
	2			
		[2]		
(b)	Stainless steel is an alloy that is used to make cutlery.			
	Give one reason why stainless steel is used to make cutlery.			
		[1]		
(c)	Table 5.1 shows some information about the reaction of four metals with oxygen.			

Table 5.1

metal	reaction with oxygen
gold	no reaction
lanthanum	forms a layer of oxide rapidly but does not burn
magnesium	burns rapidly to form an oxide
nickel	forms a layer of oxide slowly but does not burn

Put the four metals in order of their reactivity. Put the least reactive metal first.

[2]

(d) Complete the diagram in Fig. 5.1 to show the electronic configuration of a magnesium atom.

Fig. 5.1

[1]

[Total: 6]

6	(a)	A student investigates the reaction of magnesium with dilute hydrochloric acid at three different
		temperatures.

The temperatures are:

- 20°C
- 30°C
- 40°C.

All other conditions stay the same.

Table 6.1 shows the time taken for each reaction to finish.

Table 6.1

temperature /°C	time taken for the reaction to finish/s
	45
	210
	95

	(i)	Complete Table 6.1 by writing the temperatures in the first column. [1]
	(ii)	Describe the effect on the time taken for the magnesium to finish reacting with dilute hydrochloric acid when the surface area of the magnesium is increased.
		All other conditions stay the same.
		[1]
(iii)		Describe the effect on the time taken for the magnesium to finish reacting with dilute hydrochloric acid when the concentration of acid is decreased.
		All other conditions stay the same.
		[1]
(b)		scribe how crystals of magnesium chloride can be prepared after reacting excess gnesium with dilute hydrochloric acid.

(c)	Magnesium chloride is soluble in water.	
	Choose one other compound that is soluble in	water.
	Tick (✓) one box.	
	ammonium sulfate	
	calcium carbonate	
	iron(II) hydroxide	
	silver chloride	
		[1]
		[Total: 6]

7 (a) Fig. 7.1 shows the displayed formula of compound E.

Fig. 7.1

	(i)	On Fig. 7.1 draw a circle around the functional group that makes compound E unsaturated. [1]
(ii)	Deduce the molecular formula of compound E .
		[1]
(i	ii)	Describe a chemical test to distinguish between a saturated and an unsaturated compound.
		test
		observations with saturated compound
		observations with unsaturated compound
		[3]
(b)	Alc	phols have an –OH functional group.
	(i)	Write the general formula for the alcohol homologous series.
		[1]

				13		
	(ii)	Ethanol is an	alcohol with two carb	on atoms in each m	olecule.	
		Draw the disp	layed formula of etha	anol.		
						[1]
						[1]
(c)	Eth	anol reacts to f	orm a compound witl	h the formula $C_6H_{12}C_6$) ₂ .	
	Cor	mplete Table 7.	1 to calculate the rela	ative molecular mas	s of $C_6H_{12}O_2$.	
			T	able 7.1		
		atom	number of atoms	relative atomic mass		
		carbon	6	12	6 × 12 = 72	
		hydrogen		1		
		oxygen		16		
				relative molecu	ılar mass =	[2]
(d)			anufactured by the fe	rmentation of aqueo	us glucose.	
			ns for fermentation.			
	2					[2]

(e) Ethanol can be oxidised to ethanoic acid.

Complete the word equation for the reaction of ethanoic acid with sodium.

[2]

[Total: 13]

			15	
8	Thi	s qu	estion is about non-metals.	
	(a)	Noi	n-metals are poor thermal conductors.	
		Des	scribe two other physical properties which are typical of non-metals.	
		1		
		2		[2]
	(b)	Cai	bon dioxide contributes to increased global warming which leads to climate change.	
		Sta	te two strategies which help to reduce climate change caused by carbon dioxide.	
		1		
		2		[2]
				[4]
	(c)	Wa	ter is a simple molecular compound.	
		(i)	Complete Fig. 8.1 to show the dot-and-cross diagram for a molecule of water.	
			Show outer shell electrons only.	
			Н	
			Fig. 8.1	[2]
		(ii)	State two properties of simple molecular compounds.	

(iv) Pure water has a neutral pH value.

Choose from the list, the pH value that is neutral.

Draw a circle around your chosen answer.

pH 1 pH 3 pH 7 pH 14 [1]

(v) A crystal of blue copper(II) sulfate is placed at the bottom of a beaker of water as shown in Fig. 8.2.

Fig. 8.2

After one day, the blue colour has spread throughout the water in the beaker.
Explain these results in terms of the kinetic particle theory.
[3

[Total: 13]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

			۰	_												_		_	_		_	nos
		2	Ë	helium 4	10	Se	neon 20	18	Ar	argon 40	36	궃	kryptoi 84	54	×e	xenon 131	98	R	radon	118	O	oganess
	IIA				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Αţ	astatine -	117	<u>⊼</u>	tennessine -
	IA				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -
	\sim				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
Group	≡				2	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204	113	R	nihonium
								•			30	Zu	zinc 65	48	g	cadmium 112	80	Η̈́	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
											28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
											27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ϊ́	iridium 192	109	Μ̈́	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	ΗS	hassium -
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium	
						log	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	g	niobium 93	73	<u>⊾</u>	tantalum 181	105	<u>م</u>	dubnium
						ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	쪼	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
					4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	Ļ	francium
	Group	Group	Group III IV V VI VII		Group III IV V VI VII Hydrogen H Hydrogen H Hydrogen H Hydrogen H Hydrogen H Hydrogen Hydrogen	II	II	Group III III IV V VII VIII H H H H IV VII VIII VIII	Group III III IV V VII VIII H H H VII VII VIII VIII	II	III	II	III	II	II	II	II	II	II	II	II	II

71 Lu lutetium 175	103 Lr lawrendum
70 Yb ytterbium 173	No nobelium
69 Tm thulium 169	Md mendelevium
68 Er erbium 167	100 Fm fermium
67 Ho holmium 165	BS einsteinium
66 Dy dysprosium 163	98 Cf californium
65 Tb terbium 159	97 BK berkelium
Gd gadolinium 157	96 Cm
63 Eu europium 152	95 Am americium
62 Sm samarium 150	94 Pu
Pm promethium	Np neptunium
60 Nd neodymium 144	92 U uranium 238
Pr praseodymium 141	Pa protactinium 231
Cenum	90 Th
57 La	89 AC actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).