

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number XXXXX* Publications Code 4CH1_2CR_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Q	uestion umber	Answer	Notes	Marks
1	(a) (i)	P neutron		3
		Q proton		
		R electron		
	(ii)	nucleus	ALLOW nuclei	1
	(b)	boron	ALLOW B	1
				Total 5

Question number	Answer	Notes	Marks
2 (a)	M1 dissolving M2 diffusion	Answers can be in either order IGNORE dilution	2
(b) (i)	A 3 B is incorrect as there are not 4 different types of atoms in KMnO ₄ C is incorrect as there are not 6 different types of atoms in KMnO ₄ D is incorrect as there are not 7 different types of atoms in KMnO ₄		1
(ii)	(<i>M</i> _r = 39 + 55 + 16 x 4 =) 158		1
(c)	(something that) gives oxygen (to another substance)/takes/gains electrons (from another substance) OWTTE	ALLOW oxygen donor ALLOW electron acceptor ALLOW (something that) causes another substance to be oxidised/to lose electrons OWTTE ALLOW (something that) is reduced (in a reaction) ALLOW increases the oxidation number (of another species) OWTTE	1
			Total 5

Question number	Answer	Notes	Marks
3 (a) (i) (ii)	 B C₄H₁₀ A is incorrect as C₂H₅ is not the molecular formula of an alkane C is incorrect as CH₂CH₂ is the structural formula of an alkene D is incorrect as CH₃CH₂CH₃ is the structural formula of an alkane C C₃H₈ A is incorrect as CH₂ is not a molecular formula but 		1
	is an empirical formula of an alkene B is incorrect as the empirical formula of C_2H_6 is CH_3 D is incorrect as the empirical formula of C_4H_{10} is C_2H_5		
(b) (i)	substitution		1
(ii)	CH_4 + $Br_2 \rightarrow CH_3Br$ + HBr	ALLOW multiples	1
		IGNORE state symbols even if incorrect	
(c) (i)	M1 y (= 220 ÷ 44) = 5		2
	M2 z (= 108 ÷ 18) = 6		
(ii)	M1 C_5H_{12} M2 x = 8	ALLOW ECF in (ii) from incorrect values of y and z in (i) to score M1 the answer must be the formula of an alkane	2
(d)	An explanation including one of the following pairs	M2 dep on M1	2
	 M1 carbon monoxide/CO is produced M2 (carbon monoxide) is toxic/poisonous /reduces the capacity of the blood to carry oxygen OWTTE 	ACCEPT prevents blood from carrying oxygen	
	OR	explanation in terms of haemoglobin e.g. prevents haemoglobin from carrying oxygen	
	M1 carbon/soot		
	M2 causes asthma/bronchitis/respiratory problems OWTTE		Total 10

Quest numl	tion ber	Answer	Notes	Marks
4 (a)		An explanation of properties that includes five of the following points	reason must be linked to correct property	5
		M1 conducts electricity	IGNORE references to cost/reactivity/hardness/ strength/shiny	
		M2 (because the) delocalised electrons can move/flow (through structure)	If any mention of ions/atoms moving cannot score M2	
		M3 malleable/ductile	ALLOW explanations of malleable/ductile	
		M4 (because) layers of cations/atoms	ALLOW sheets/rows	
		M5 layers/cations/atoms can slide/slip/move over each other		
		M6 high melting point	IGNORE high boiling point	
		M7 (because) strong (electrostatic) attraction between cations and delocalised electrons	ALLOW giant metallic lattice/strong bonds between cations and delocalised electrons /strong metallic bonds	
			Max 4 if any mention of intermolecular forces/covalent/ionic bonding	
(b)	(i)	copper ion Cu^{2+} sulfate ion SO_4^{2-}	ALLOW Cu ⁺² SO ₄ ⁻²	1
	(ii)	effervescence/bubbles/fizzing	IGNORE oxygen/gas	1
	(iii)	relights a glowing splint		1
	(iv)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		2
		M1 all formulae correct		
		M2 balancing of correct formulae		
				1

(V)	(OH ⁻ ions/they) are present in/come from water OWTTE	ACCEPT (some) water molecules dissociate to give OH ⁻ ions OWTTE ALLOW because copper sulfate solution/it contains water/is aqueous REJECT because copper sulfate/solution is alkaline	
			Total 11

Question	Answer	Notes	Marks
5 (a) (i)	glucose \rightarrow ethanol + carbon dioxide	ACCEPT fully correct chemical equation IGNORE yeast	1
(ii)	yeast	IGNORE zymase/enzymes	1
(iii)	M1 30 °C	ACCEPT any value between 20 and 40 inclusive IGNORE yeast IGNORE room temperature	2
	M2 anaerobic conditions / absence of air/oxygen	Answers can be in any order	
(b) (i)	B CH ₃ COOC₄H ₉		1
	A is incorrect as this is propyl ethanoate C is incorrect as this is butyl propanoate D is incorrect as this is ethyl butanoate		
(ii)	sweet/fruity/distinctive smell OWTTE		1
(iii)	perfumes/(food) flavourings/solvents	IGNORE (food) colourings	1
		ACCEPT any other appropriate use eg emulsifiers	
(c) (i)	(atom/group of atoms in a compound that) determines its chemical properties/reactions OWTTE	ALLOW (atom/group of atoms that) determines which homologous series	1
(ii)	circle around O II -C-O-H		1

PMT

(iii)	M1 $\frac{60.00}{12}$ $\frac{4.44}{1}$ $\frac{35.56}{16}$	If upside down/use atomic numbers scores 0	3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALLOW rounding of 2.2225 but should show at least 2 do	
	OR 2.25 2 1		
	$M3 2.25 \times 4 2 \times 4 1 \times 4 = 9:8:4$	ALLOW other correct methods eg M1 Mr (of aspirin) = 180	
		M2 9x12 or 108 8x1 or 8 4x16 or 64	
		ALL 3 needed for M2	
		M3 <u>108</u> x 100 = 60 (%) 180	
		<u>8</u> x 100 = 4.44 (%) 180	
		<u>108</u> x 100 = 35.56 (%) 180	
		ALL 3 needed for M3	Total 12

Question number	Answer	Notes	Marks
6 (a)	(results that are) within 0.2(0) (cm ³) of each other	ACCEPT other values if less than 0.2	1
(b)	An explanation that links two of the following pairs of points		4
	M1 a pipette should have been used instead of measuring cylinder/to measure the sodium hydroxide solution		
	M2 a pipette is more precise/a measuring cylinder is less precise	ALLOW a pipette is more accurate/ a measuring cylinder is less accurate ALLOW pipette would give exactly 25 cm ³	
	M3 methyl orange/phenolphthalein/litmus should have been used instead of universal indicator		
	M4 methyl orange/phenolphthalein/litmus would give a clear/sharp colour change/end-point /universal indicator would not give a clear/sharp colour change/end-point	ALLOW universal indicator would give a range of colours ALLOW methyl orange/ phenolphthalein/litmus only have two colours/ are one colour in acid and one in alkali (colours given for a named indicator do not need to be correct) ALLOW easier to see colour change with methyl orange/ phenolphthalein/litmus	
	M5 use white tile (under conical flask)		
	M6 easier to see colour change (at end point) OWTTE		

(c)	M1 amount of NaOH = <u>25.0 x 1.50</u> OR 0.0375 (mol) 1000	correct answer without 3 working scores 3
	M2 amount of $H_2SO_4 = \frac{0.0375}{2}$ OR 0.01875 (mol)	ALLOW ECF throughout
	M3 volume of H ₂ SO ₄ = (<u>0.01875 x 1000)</u> = 31.25 (cm ³) (0.600)	ALLOW 2, 3 or 4 sig figs throughout
		Penalise use of 1 sig fig once only
		62.5/125 scores 2
		ACCEPT alternative methods

(d)	A description that refers to four of the following		4
	M1 heat the solution	ALLOW boil Max 1 mark if solution evaporated to dryness	
	M2 to evaporate some of the water/ to form a saturated solution/ to crystallisation point	If solution left to partially evaporate without heating only M4 and M5 can be awarded	
	M3 leave the solution to cool / leave the solution for (more) crystals to form	leave solution to cool and (then) filter off crystals scores M3 and M4	
	M4 filter off the crystals	ALLOW decant off solution IGNORE references to washing	
	M5 suitable method of drying the crystals	e.g. dry between filter papers/dry in a warm oven/ leave to dry REJECT hot oven or direct heating with Bunsen burner M5 DEP on crystals having been formed No M5 if crystals are washed after drying	
			Total 12

Question number	Answer	Notes	Marks
7 (a) (i)	reversible (reaction) / reaction that goes both ways OWTTE	IGNORE references to equilibrium	1
(ii)	increases the rate of reaction /speeds up the reaction	REJECT to increase yield ALLOW to reach equilibrium faster IGNORE provides an alternative pathway with lower activation energy	1
(b) (i)	M1 vield decreases	IGNORE references to rate and Le Chatelier throughout	2
	M2 (forward) reaction is exothermic/ backward reaction is endothermic	ACCEPT (when temperature increased equilibrium shifts in) endothermic direction which is (from right) to left M2 DEP M1 correct or missing	2
(ii)	M1 yield increases		
	M2 there are fewer moles (of gas) on the right-hand side/product side / there are more moles (of gas) on the left-hand side/there are 4 moles of reactants and 2 moles of product/ OWTTE	ALLOW molecules for moles M2 DEP M1 correct or missing	

7	(C)	Energy $N_2 + 3H_2$ ΔH $2NH_3$	IGNORE any horizontal axis/labels IGNORE any attempts at including activation energy	3
		$\boldsymbol{M1}$ horizontal line labelled with N_2 + $3H_2$	ALLOW nitrogen and hydrogen	
		M2 horizontal line showing $2NH_3$ in correct position	ALLOW ammonia	
			If not balanced or words reactants and products on horizontal lines in correct position scores 1 out of 2	
		M3 vertical line in correct position and labelled ΔH /-92 (kJ/mol)	ACCEPT double headed arrow or arrow pointing from reactants level to products level REJECT arrow pointing from products level to reactants level If endothermic reaction can score M1 and M3	

7	(d)	(i)	M1 amount of nitrogen = (48 ÷ 24 =) 2 (mol)		3
			M2 amount of hydrogen = (120 ÷ 24 =) 5 (mol)		
			M3 2.5 mol of hydrogen to 1 mol of nitrogen (which is less than 3 so nitrogen is in excess) OR 2 mol of nitrogen needs 6 mol of hydrogen (so not enough hydrogen to react with the nitrogen)	ACCEPT alternative methods	
		(ii)		correct answer without working scores 3	3
				ALLOW ECF from (i)	
			M1 5 mol of hydrogen gives 3.33 mol of ammonia	ALLOW 3.3	
			M2 volume of ammonia (if 100% conversion) = 3.33 x 24 OR 80 (dm ³)	use of 3.3 gives 79.2	
			M3 (volume of ammonia if 20% conversion) = (20 x 80) 100	use of 79.2 gives 15.84	
				ALLOW ECF from M2	
				ACCEPT 120 dm ³ of hydrogen gives 2 x 120 ÷ 3 OR 80 (dm ³ of ammonia) for M1 and M2	
				ALLOW max 2 for use of 48 dm ³ of nitrogen giving 96 dm ³ of ammonia and final answer of 19.2 (dm ³)	
					Total 15

PMT