

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022

Question Paper Log Number P70947A

Publications Code 4CH1_2C_2206_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment.
 Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	argon	ALLOW Ar	1
(ii	nitrogen	ALLOW N ₂ /N	1
(iii	hydrogen	ALLOW H ₂ /H	1
(b)	climate change/global warming /oceans becoming more acidic	ALLOW greenhouse effect	1
		ALLOW effects of global warming e.g. melting of polar ice caps/flooding/wild fires	
		IGNORE acid rain	
		REJECT references to ozone layer	
(c)	M1 bubble/pass/add the gas/carbon dioxide into limewater		2
	M2 (limewater) turns cloudy/milky	ALLOW white precipitate	
		M2 dep on mention of limewater	
		REJECT addition of extra reagents for both marks	
			Total 6

Quest numb		Answer	Notes	Marks
2 (a)	(i)	M1 (X) measuring cylinder		2
		M2 (Y) pipette	ALLOW graduated pipette	
	(ii)	(volume measurement with Y is) more precise ORA	ALLOW (volume measurement with Y is) more accurate ORA	1
			ALLOW (Y gives) a (more) exact volume /exactly 25 cm ³	
(b)	(i)	yellow		1
	(ii)	there is no clear end point/ colour change is gradual (at the end point)/no sharp colour change OWTTE	ALLOW it has a range of colours	1
(c)			correct answer with or without working scores 3	3
		M1 moles of HNO ₃ = $\frac{21.5 \times 0.6(00)}{1000}$ OR 0.0129		
		M2 moles of Ba(OH) ₂ = $0.0129 \div 2$ OR 0.00645	ALLOW ecf on M2	
		M3 conc. of Ba(OH) ₂ = $\frac{0.00645 \times 1000}{25}$ = 0.258 (mol/dm ³)	ACCEPT alternative methods	
			0.516 scores 2	
			1.032 scores 2	
			ALLOW 2 sig figs correctly rounded throughout	
			Penalise rounding to 1 sig fig once only	
(d)		barium sulfate is insoluble /does not dissolve /forms a precipitate		1
				Total 9

Question number	Answer	Notes	Marks
3 (a)	C fluorine A is incorrect as astatine is black B is incorrect as bromine is brown D is incorrect as iodine is dark grey		1
(b)	A astatine B is incorrect as bromine is a liquid C is incorrect as chlorine is a gas D is incorrect as fluorine is a gas		1
(c)	An explanation that links the following four points M1 fluorine is more reactive than chlorine ORA M2 the outer shell is closer to the nucleus in fluorine / fluorine has fewer shells / fluorine has a smaller atomic radius ORA M3 there is a stronger attraction to the nucleus for an electron in fluorine ORA M4 so fluorine accepts an electron more readily ORA	ALLOW reactivity decreases down the group ORA ALLOW a fluorine atom is smaller than a chlorine atom ORA ALLOW there is less shielding in fluorine ORA	4
(d) (i)	2Li + Cl₂ → 2LiCl	ALLOW multiples or fractions IGNORE state symbols even if incorrect ACCEPT 2Li*Cl* REJECT any charges on Li or Cl ₂	1

(ii)	A description that refers to the following five points		5
	Test for lithium ions	ACCEPT description of	
	M1 flame test	ACCEPT description of flame test	
	M2 red (flame)	ALLOW crimson/scarlet	
		REJECT brick red/orange red	
		M2 dep on M1	
	Test for chloride ions		
	M3 add nitric acid	REJECT incorrect acid e.g. HCl or H ₂ SO ₄ for M3 only	
	M4 add silver nitrate (solution)	ALLOW acidified silver nitrate for M3 and M4	
	M5 white precipitate	M5 dep on addition of silver nitrate	
			Total 12

Question number	Answer	Notes	Marks
4 (a)	M1 bright/white light OR bright/white flame		2
	M2 white powder/solid/ash	ALLOW white smoke	
		ALLOW grey powder /solid/ash	
(b)	A description that refers to the following two points	REJECT white precipitate	2
	M1 magnesium/Mg loses two electrons/becomes 2.8		
	M2 oxygen/O gains two electrons/becomes 2.8	ACCEPT magnesium gives two electrons to oxygen for M1 and M2	
		Both marks can be scored from diagrams showing correct electronic configurations of the ions.	
(c) (i)	magnesium is more reactive/higher in the reactivity	_	1
	series (than carbon)/magnesium is a better reducing agent (than carbon) ORA	ALLOW carbon cannot displace magnesium	
(ii)	An explanation that links the following four points		4
	M1 (magnesium) has delocalised electrons		
	M2 electrons can move	REJECT reference to ions or atoms moving for M2	
	M3 (magnesium chloride) can only conduct when molten/in solution OR (magnesium chloride) cannot conduct when solid	ions are free to move when (magnesium	
	M4 ions are free to move	chloride) is molten/in solution scores M3 and M4	
		REJECT reference to electrons moving for M4	
(d) (i)	magnesium ions/ Mg ²⁺ gains electrons	ALLOW electrons are gained	1
		REJECT magnesium /Mg gains electrons	
		REJECT reference to loss or gain of oxygen	
(ii)	$2Cl^- \rightarrow Cl_2 + 2e^{(-)}$	ALLOW $2Cl^ 2e^{(-)} \rightarrow Cl_2$	1
		ALLOW multiples or fractions	
		IGNORE state symbols even if incorrect	
			Total 11

Question	Answer	Notes	Marks
number 5 (a) (i)		0 marks for division by	
5 (a) (i)	M1 40.0 6.7 53.3 12 1 16	atomic numbers or upside-down calculation	2
	M2 3.33 6.7 3.33 AND	ALLOW any number of sig figs except 1	
	1 2 1	ACCEPT alternative methods	
(ii)	CH₃COOH	ACCEPT HCOOCH ₃	1
	OR	OR	
	H-Ċ-Ć H Ć	0	
(b) (i)	2HCOOH + Na ₂ CO ₃ \rightarrow 2HCOONa + CO ₂ + H ₂ O		2
	M1 CO ₂ + H ₂ O	IGNORE numbers in front of CO ₂ and/or H ₂ O if only M1 scored	
	M2 HCOONa and equation correctly balanced	REJECT NaCOOH	
		ALLOW NaHCOO	
(ii)	bubbles/ fizzing/ effervescence	IGNORE gas given off	1
		ALLOW sodium carbonate disappears/dissolves	
(c) (i)	propyl methanoate	spelling must be correct	1
		ALLOW propyl formate	
(ii)	reversible reaction	ALLOW reaction which goes both ways	1
		IGNORE equilibrium	

(iii)	forward and backward rea rate OWTTE	ctions occur at the same		1
	OR	OR		
	concentrations of reactant constant/stay the same/de		ALLOW amounts/moles/ratios of reactants and products remain constant	
			REJECT concentrations of reactants and products are equal/the same	
(d) (i)	condensation (polymerisa	tion)		1
(ii)				2
	M1	M2	ALLOW HOOCCH ₂ CH ₂ COOH for M1	
	HO—C—CH ₂ CH ₂ —C—OH	HO—CH ₂ CH ₂ —OH	ALLOW HOCH ₂ CH ₂ OH for M2	
			REJECT OH—C once only	
				Total 12

Question number	Answer	Notes	Marks
6 (a)		correct answer with or without working scores 4	4
	M1 (moles of TiO ₂ =) $\frac{20 \times 10^6}{80}$ OR 2.5 × 10 ⁵ (mol)	ACCEPT 250 000 (mol)	
	M2 (moles of Cl_2 =) 2.5 × 10 ⁵ x 2 OR 5.0 × 10 ⁵ (mol)	ACCEPT 500 000 (mol)	
	M3 (vol of $Cl_2 = 0.0 \times 10^5 \times 24$ OR 12 000 000 (dm ³)		
	$M4 1.2 \times 10^7 \text{ (dm}^3\text{)}$	ALLOW ecf on M2 and M3	
		6 x 10 ⁶ scores 3	
		3 x 10 ⁶ scores 3	
		6 000 000 scores 2	
		3 000 000 scores 2	
		2.083 x 10 ⁴ scores 3	
(b)	An explanation that links the following two points		2
	M1 argon is unreactive/inert		
	M2 (so argon) will not react with/oxidise the magnesium	ALLOW argon will not react with/oxidise titanium	
	OR oxygen (in air) will react with/oxidise the	OR oxygen (in air) will react	
	magnesium	with/oxidise the titanium	
(2)	An avalenation that links the following three		2
(c)	An explanation that links the following three points	all marks can be awarded from labelled diagrams	3
	M1 in pure titanium all atoms are the same size OR layers/atoms can slide over each other (making it soft /malleable)	ALLOW cations/ions /particles in place of atoms throughout	
	M2 the alloy has atoms of different sizes	REJECT mention of molecules once only	
	M3 (which disrupts the structure so that) atoms/layers do not/harder to slide over each other (making it stronger) OWTTE	motecutes office only	
			Total 9

Question number	Answer	Notes	Marks
7 (a)	carbon	ALLOW soot	1
		ALLOW copper(II) oxide /copper oxide/CuO	
		REJECT copper(I) oxide	
(b)	M1 (amount of ethanol) = 0.92 ÷ 46 OR 0.02(0) (mol)		2
	M2 (-)18.2 ÷ 0.02(0) = (-)910 (kJ/mol)	ALLOW alternative methods	
(c)	Any 2 from		2
	M1 heat (energy)/ thermal energy was lost (to the surroundings/apparatus)		
	M2 incomplete combustion (of ethanol)		
	M3 the ethanol was impure/ethanol evaporates		
(d) (i)		correct answer with or without working scores 4	4
	M1 Σ bonds broken = 4 x C–H + 2 x 498	ALLOW 2 x 498 OR 996 seen	
	M2 Σ bonds formed = 2 x 805 + 4 x 463 OR 3462		
	M3 4 x C–H + 996 – 3462 = – 890		
	M4 C–H = 1576 ÷ 4 = 394 (kJ/mol)	ALLOW ecf throughout	
		839 without working scores 3	
		616.5/617 without working scores 3	

(ii)			2
	Energy $CH_4 + 2O_2$ ΔH $CO_2 + 2H_2O$		
	 M1 horizontal line to show products in correct position and correctly labelled M2 vertical line in correct position and labelled ΔH/- 890 (kJ/mol) 	ACCEPT double headed arrow or arrow pointing from reactants level to products level REJECT arrow pointing from products level to reactants level IGNORE any attempts at including activation energy If endothermic reaction shown M2 can be awarded for correct arrow/line labelled ΔH/+890 (kJ/mol)	
			Total 11