

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020 Publications Code 4CH1_2CR_2011_MS All the material in this publication is copyright © Pearson Education Ltd 2020

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	M1 A test tube / boiling tube		4 Grad
	M2 B evaporating basin	ALLOW evaporating	Ciud
	M3 C measuring cylinder		
	M4 D (top-pan) balance	ALLOW (weighing) scale(s)	
		ALLOW weighing machine	
(b)	<u> </u>		1
(0)	A is incorrect as a test tube cannot measure a		Comp
	volume of liquid B is incorrect as an evaporating basin cannot		
	measure a volume of liquid		
	volume		
			Total 5

Question number	Answer	Notes	Marks
2 (a)	A 3 B is incorrect as there are not 6 electrons in the outer shell of a thallium atom C is incorrect as there are not 13 electrons in the outer shell of a thallium atom D is incorrect as 81 is the total number of electrons in a thallium atom not the number in the outer shell		1 Comp
(b)	 B 78 A is incorrect as there are not 3 electrons in a thallium ion C is incorrect as 81 is the number of electrons in a thallium atom not a thallium ion D is incorrect as there are not 84 electrons in a thallium ion 		1 Comp

Question number	Answer	Notes	Marks
2 (c) (i)	M1 (number of protons) 81M2 (number of neutrons) 124	ACCEPT eighty-one ACCEPT one hundred and twenty-four	2 Cl
(ii)	 calculate sum of mass numbers multiplied by percentage abundances divide answer by 100 give answer to one decimal place 		3 Exp
	Example calculation		
	M1 (203 x 30.8) + (205 x 69.2) OR 20438.4	ACCEPT 4, 5 or 6 sig fig	
	M2 20438.4 ÷ 100 OR 204.384	ACCEPT 5 or 6 sig fig	
	M3 204.4	(203 x 0.308) + (205 x 0.692) OR 204.384 with or without working scores M1 and M2 Correct answer to 1 d.p. with or without working scores 3 marks	
			Total 7

Question number		Answer	Notes	Marks
3	(a) (i)	M1 (bitumen) (surfacing) roads/(surfacing) roofs	ALLOW other suitable uses	2 Exp
		M2 (gasoline) petrol / fuel for cars/vehicles	ALLOW other suitable uses e.g. fuel for cooking	
	(ii)	An explanation that links the following two points		2 Evo
		M1 column is cooler near the top than at the bottom ORA	ACCEPT column cool near the top and hot at the bottom	Ξxþ
			ACCEPT temperature decreases up the column ORA	
		M2 gasoline has a lower boiling point than bitumen (so is collected nearer the top) ORA	ACCEPT gasoline has a low boiling point (so is collected near the top) and bitumen has a high boiling point (so is collected near the bottom)	
	(b) (i)	M1 alumina/silica (catalyst)	ACCEPT Al ₂ O ₃ / SiO ₂ /aluminium oxide /silicon dioxide /aluminosilicate(s) /zeolite(s)	2 Exp
		M2 600 – 700 (°C)	ACCEPT range or any value within the range	
			ACCEPT correct temperatures in other units	
	(ii)	$C_{12}H_{26}> C_7H_{16} + C_2H_4 + C_3H_6$	ACCEPT answers in either order	2 Exp
		M1 C ₂ H ₄		
		M2 C ₃ H ₆		
				Total 8
		۱		i

Question number	Answer	Notes	Marks
4 (a)	Any two of the following observations.		2 Exp
	M1 (sodium) floats/moves on surface (of water)		Evb
	M2 (sodium) melts/forms a ball		
	M3 (sodium) gets smaller/disappears	ALLOW dissolves	
	M4 (sodium forms) white trail	IGNORE references to flame/heat released /temperature increases	
		IGNORE fizzing /effervescence	
(b) (i)	$2Li + F_2 \rightarrow 2LiF$	ALLOW multiples or fractions	1 Exp
		IGNORE state symbols even if incorrect	
(ii)	M1 flame test	ALLOW description of flame test	2 Exp
	M2 red (flame)	ALLOW crimson /scarlet	
		REJECT orange-red/ brick red	
(iii)	M1 correct electron arrangement of lithium ion $()^+$	ACCEPT any combination of dots and crosses	3 Exp
	lithium ion Li* [2]*	IGNORE empty second shell	
	M2 correct electron arrangement of fluoride ion	Inner electron shell required to score M2	
	fluoride ion F ⁻ [2,8] ⁻ M3 correct charges on both ions (with or without brackets)	M3 not dep on M1 and M2 correct	

Question number	Answer	Notes	Marks
4 (c)	An explanation that links three of the following four points		3 Exp
	M1 the outer electron is further from the nucleus in potassium / potassium has more shells/ potassium has larger atomic radius ORA	ALLOW potassium atom is bigger than a sodium atom	
	M2 there is more shielding (by the inner shells) in potassium ORA		
	M3 there is less attraction between the outer electron and the nucleus in potassium ORA		
	M4 (so outer) electron (in potassium) more easily lost ORA	outer electron needs to be mentioned at least once in the answer for full marks	
		Max 2 if no mention of outer electron in the answer	
			Total 11

Ç	Questi numb	ion er	Answer	Notes	Marks
5	(a)	(i)	A labelled diagram showing		2
			M1 at least three rows of at least three cations/atoms in a regular arrangement		Exp
			M2 surrounded by (delocalised) electrons		
			Example of diagram metal cations ++++++++++++++++++++++++++++++++++++	Max 1 if no labels Minimum requirement for 2 marks is + signs on atoms and electrons labelled or shown as e ⁻	
		(ii)	An explanation that links the following two points		2 5 x p
			M1 delocalised electrons	IGNORE free electrons/ sea of electrons	Ľxμ
			M2 flow/are mobile/move/are free to move	M2 dep on mention of electrons	
				Any mention of ions/atoms moving scores 0	
	(b)		Any two of the following properties		2
			M1 low density	ALLOW lightweight IGNORE light	Exp
				IGNORE less dense	
			M2 does not react with drink	ALLOW does not corrode/non-toxic	
				IGNORE does not rust	
			M3 malleable	ALLOW easy to bend/ easy to shape	
				IGNORE references to cost	
				IGNORE can be recycled	
				IGNORE any irrelevant properties e.g. high melting/boiling point/ good conductor/ductile	

Question Answer		on er	Answer	Notes	Marks
5	(c)	(i)	aluminium/it is more reactive/higher in the reactivity series than carbon ORA	ALLOW aluminium is too reactive/too high in the reactivity series	1 Grad
		(ii)	electrons are gained (by aluminium ion/Al ³⁺)	ACCEPT oxidation state of aluminium/Al is decreased/ changes from +3 to 0	1 Exp
				REJECT aluminium/Al gains electrons	
				IGNORE references to loss of oxygen	
		(iii)	$2O^{2-} \rightarrow O_2 + 4e^{(-)}$	ACCEPT multiples and	2
			M1 correct formulae of products	Tractions	Exp
			M2 balancing of correct formulae	M2 dep on M1	
					Total 10

C	Questi numb	ion er	Answer	Notes	Marks
6	(a)	(i)	pipette		1 Cl
	(b)	(i)	M1 (colour in NaOH) pink	ACCEPT magenta	2 Grad
				ALLOW red	
			M2 (colour in HCI) colourless/no colour	IGNORE clear	
				1 mark for two correct colours in the wrong order	
		(ii)	There is no clear (colour change at the) end point/ difficult to determine which shade of green is pH 7 OWTTE	ALLOW it has a range of colours	1 Exp

6 (c) (i) A description that makes reference to the following two points 2 M1 add 21.5 cm ³ of hydrochloric acid M2 to 25 cm ³ of sodium hydroxide solution 0 marks if mention of adding indicator ALLOW repeat the titration without indicator for 1 mark ALLOW the following alternative method M1 add activated charcoal (to absorb the indicator) M2 filter (to remove the activated charcoal indicator) M2 dep on M1 M2 dep on M1	Question number	Answer	Notes	Marks
M1 add activated charcoal (to absorb the indicator) M2 filter (to remove the activated charcoal and indicator) M2 dep on M1	Question number 6 (c) (i)	Answer A description that makes reference to the following two points M1 add 21.5 cm ³ of hydrochloric acid M2 to 25 cm ³ of sodium hydroxide solution	Notes O marks if mention of adding indicator ALLOW repeat the titration without indicator for 1 mark ALLOW the following alternative method	Marks 2 Exp
			 M1 add activated charcoal (to absorb the indicator) M2 filter (to remove the activated charcoal and indicator) M2 dep on M1 	

A description that makes reference to the following	Max 1 mark if solution	4
four points M1 heat the solution to evaporate some of the water/	evaporated to dryness	Exp
to form a saturated solution/ to crystallisation point	evaporate without heating only M3 and M4 can be awarded	
M2 leave the solution to cool /leave the solution for (more) crystals to form		
M3 filter off the crystals	IGNORE references to washing	
M4 suitable method of drying the crystals	e.g. dry between filter papers/dry in a warm oven/ leave to dry	
	REJECT hot oven or direct heating with Bunsen burner	
	No M4 if crystals are washed after drying	
	1	1

		leave to dry	
		REJECT hot oven or direct heating with Bunsen burner	
		No M4 if crystals are washed after drying	
6 (d)	 calculate the amount, in moles, of NaOH divide amount in moles by volume in dm3 evaluation to obtain correct answer 	correct answer without working scores 3 marks	3 Exp
	Example calculation		
	M1 <i>n</i> (NaOH) = 0.0250 x 0.800 or 0.02(00)		
	M2 conc = (0.02 ÷ 0.0215)	answer to M1 ÷ 0.0215	
	M3 0.930	ALLOW any number of sig fig except 1	
		ALLOW ecf on M2	
			Total 13

(ii)

Question		on er	Answer	Notes	Marks
7	(a)	(i)	sulfuric acid	IGNORE references to concentration	1 Grad
				ALLOW H ₂ SO ₄	
				REJECT sulfurous acid	
		(ii)	D orange to green		1
			A is incorrect as the solution is not colourless at the start of the reaction B is incorrect as the solution is not green at the start or orange at the end of the reaction C is incorrect as the solution is not colourless at the end of the reaction		Comp
	(b)	(i)	 show the expression for the sum of the bond energies for the breaking of bonds evaluation to give answer in kJ 	correct answer without working scores 2	2 Exp
			Example calculation		
			M1 ∑ C-C + 5C-H + C-O + O-H + 3O=O		
			OR ∑ 346 + (5 x 412) + 358 + 463 + (3 x 496)		
			M2 4715 (kJ)	- 1 mark for each error	
		(ii)	 show the expression for the sum of the bond energies for the forming of bonds evaluation to give answer in kJ 	correct answer without working scores 2	2 Exp
			Example calculation		
			M1 ∑ 4C=O + 6O-H		
			OR ∑ (4 x 743) + (6 x 463)		
			M2 5750 (kJ)	- 1 mark for each error	
				IGNORE any signs in (i) and (ii)	
		(iii)	(4715 – 5750 =) – 1035 (kJ/mol)	minus sign must be included	1 Exp
				ACCEPT – 1040 (kJ/mol)	
				ALLOW ecf on answers to (i) and (ii)	
				If answers to (i) and (ii) are reversed allow max 3 and ecf on (iii)	

Question	Answer	Notes	Marks
7 (c) (i)	ethyl methanoate	ALLOW ethyl formate ALLOW words written without gap	1 Grad
(ii)	M1 ester linkage O -C-O- M2 rest of molecule correct M H H H H H H H H	M2 dep on M1	2 Exp
(iii)	M1 forward and reverse reactions occur at the same rate OWTTE M2 concentrations of reactants and products remain constant		2 Exp
(d)	 calculate amount in moles of HCOOH use equation to find amount in moles of CO₂ multiply amount in moles of CO₂ by molar volume evaluation of answer in cm³ Example calculation M1 n(HCOOH) = 2.3 ÷ 46 or 0.05(0) M2 n(CO₂) = 0.05(0) ÷ 2 or 0.025 	correct answer without working scores 4	4 Exp
	M3 (volume of CO ₂) = 0.025×24 or 0.025×24000	No ecf from M1 and M2 if mass or <i>M</i> ^r multiplied by 24 /24000 ALLOW ecf from M3	
	WI4 600 (CM°)	0.6, 1200 and 2400 score 3 1.2 and 2.4 score 2	

	Total
	16

PMT