

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
3 0	CHEMISTRY		0620/52
6	Paper 5 Practica	al Test	May/June 2016
8			1 hour 15 minutes
6 0 6	Candidates ans		
6 8 5 *	Additional Mate	rials: As listed in the Confidential Instructions	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. Practical notes are provided on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Total

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 9 printed pages and 3 blank pages.

1 You are going to investigate the rate of reaction between hydrogen peroxide and aqueous potassium iodide. When these chemicals react they form iodine. Sodium thiosulfate solution reacts with iodine and can be used to show how fast the reaction proceeds.

Read all the instructions carefully before starting the experiment.

Instructions

 (a) Fill the burette up to the 40.0 cm³ mark with sodium thiosulfate solution. Use the large measuring cylinder to pour 100 cm³ of distilled water into the conical flask. Use the small measuring cylinder to add 6 cm³ of sulfuric acid, 1 cm³ of starch solution and 4 cm³ of aqueous potassium iodide to the flask. Add 1.0 cm³ of sodium thiosulfate solution from the burette to the mixture in the flask and swirl to mix.

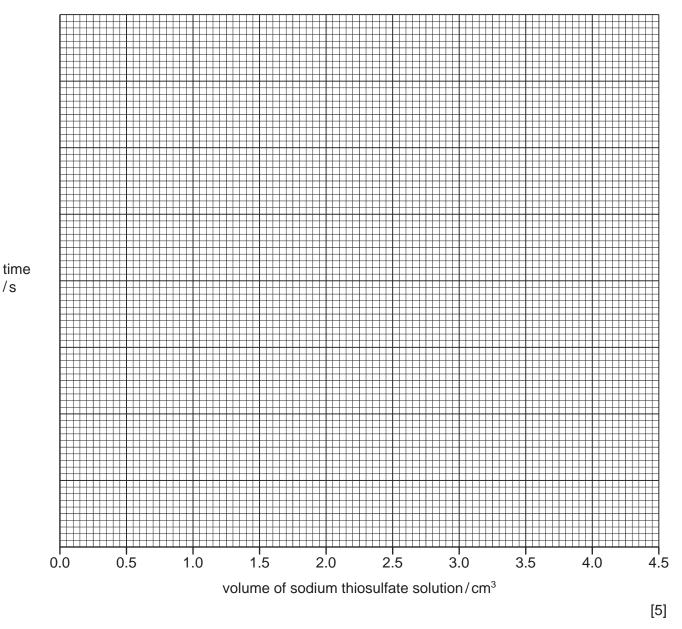
Several measurements will be taken during this experiment. Once the timer has been started leave it running until the experiment is complete.

Use the small measuring cylinder to start the reaction by adding 3 cm³ of hydrogen peroxide solution to the flask. Immediately start your timer and swirl the mixture.

Note the time taken for a blue colour to appear and record the time in the table.

Add a further 0.5 cm³ of sodium thiosulfate solution to the mixture in the conical flask and swirl until the blue colour disappears.

Note the time when the blue colour reappears and record the time in the table below.


Continue the experiment adding a further 0.5 cm³ of sodium thiosulfate solution at a time until a total of 4.0 cm³ of sodium thiosulfate solution has been added, noting the times for the blue colour to appear after each addition and recording the times in the table.

1				
time at which blue colour appears/s				

Complete the table.

[4]

(b) Plot the results you have obtained on the grid and draw a best-fit straight-line graph.

(c) (i) From your graph deduce the time for the blue colour to appear if only 0.5 cm³ of sodium thiosulfate solution had been added to the mixture in the conical flask. Show clearly on the grid how you worked out your answer.

.....[3]

(ii) Sketch on the grid the graph you would expect if the experiment was repeated at a higher temperature. [1]

(d)) Suggest the purpose of the starch solution.						
		[1]					
(e)	(i)	Suggest one advantage of using a pipette to measure the volume of the hydrogen peroxide.					
		[1]					
	(ii)	Suggest and explain one disadvantage of using a pipette to measure the volume of the hydrogen peroxide.					
(f)	Exp	plain one disadvantage of using a beaker instead of a conical flask.					
		[1]					
		[Total: 18]					

2 You are provided with two solids, E and F, which are both water soluble. Carry out the following tests on the solids, recording all of your observations at each stage.

tests on solid E

(a) Use a spatula to place half of solid E into a test-tube.
Add about 10 cm³ of distilled water to the solid and shake the mixture to dissolve.

Divide the solution into three equal portions in three test-tubes and carry out the following tests.

- (i) Add about 1 cm³ of aqueous sodium hydroxide to the first portion of the solution. Record your observations.
- (ii) Add about 1 cm³ of aqueous barium nitrate to the second portion of the solution. Now add excess dilute nitric acid to the mixture. Record your observations.

......[2]

(iii) Pour the third portion of the solution into a boiling tube and add about 1 cm³ of dilute hydrochloric acid. Warm the mixture gently. Test the gas given off with a piece of filter paper soaked in aqueous potassium manganate(VII) solution. Record your observations.

.....[2]

(b) Carry out a flame test on the rest of solid E.

Record your observations.

......[1]

tests on solid F

Use a spatula to divide solid ${\bf F}$ into two portions in two test-tubes.

(d) Describe the appearance of solid F.[1] (e) (i) Heat the first portion of solid **F**, gently then strongly. Test the gas given off with damp red litmus paper. Record your observations. (ii) Let the solid residue cool down for a few minutes. To the residue add a few drops of copper(II) sulfate solution followed by a few drops of aqueous sodium hydroxide and shake the mixture. Record your observations. (f) Tip the second portion of solid **F** into a boiling tube. Add about 3 cm³ of aqueous sodium hydroxide to the boiling tube and heat the mixture gently. Test the gas given off. Record your observations.[2] (g) Identify one of the ions in solid F.

[Total: 16]

3 Potassium sulfate is the salt made when sulfuric acid is neutralised by potassium hydroxide solution. The correct amount of potassium hydroxide solution must be added to neutralise all of the sulfuric acid.

Plan an experiment to obtain pure crystals of potassium sulfate from sulfuric acid and potassium hydroxide solution.

You are provided with common laboratory apparatus.

 	 	 	•••••	 	 	 	•••••	 •••••	 	 		
												[6]
 	 	 	•••••	 	 	 		 	 	 		[0]
											[To	tal: 6]

8

BLANK PAGE

9

BLANK PAGE

10

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS Test for anions

anion	test	test result			
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced			
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.			
bromide (Br ⁻) acidify with dilute nitric acid, then ac [in solution] aqueous silver nitrate		cream ppt.			
iodide (I ⁻)acidify with dilute nitric acid, the aqueous silver nitrate		yellow ppt.			
nitrate (NO $_3^-$) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced			
sulfate (SO ₄ ^{2–}) [in solution]	acidify, then add aqueous barium nitrate	white ppt.			
sulfite (SO ₃ ^{2–})	add dilute hydrochloric acid, warm gently and test for the presence of sulfur dioxide	sulfur dioxide produced will turn acidified aqueous potassium manganate(VII) from purple to colourless			

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia				
aluminium (Al ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess				
ammonium (NH ₄ +)	ammonia produced on warming	_				
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.				
chromium(III) (Cr ³⁺)	green ppt., soluble in excess	grey-green ppt., insoluble in excess				
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution				
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess				
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess				
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution				

Test for gases

gas	test and test results				
ammonia (NH ₃)	turns damp, red litmus paper blue				
carbon dioxide (CO_2)	turns limewater milky				
chlorine (Cl_2)	bleaches damp litmus paper				
hydrogen (H ₂)	'pops' with a lighted splint				
oxygen (O ₂)	relights a glowing splint				
sulfur dioxide (SO ₂)	turns acidifed aqueous potassium manganate(VII) from purple to colourless				

Flame tests for metal ions

metal ion	flame colour				
lithium (Li ⁺)	red				
sodium (Na⁺)	yellow				
potassium (K⁺)	lilac				
copper(II) (Cu ²⁺)	blue-green				

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.