

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CHEMISTRY

0620/41 May/June 2016

Paper 4 Theory (Extended) MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Abbreviations used in the Mark Scheme

- ; separates marking points
- / separates alternatives within a marking point
- **OR** gives alternative marking point
- R reject
- I ignore mark as if this material was not present
- A accept (a less than ideal answer which should be marked correct)
- COND indicates mark is conditional on previous marking point
- owtre or words to that effect (accept other ways of expressing the same idea)
- max indicates the maximum number of marks that can be awarded
- ecf credit a correct statement that follows a previous wrong response
- () the word/phrase in brackets is not required, but sets the context
- ora or reverse argument

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question			Ans	swer		Mar	ks
1(a)							3
		particle	relati	ve mass	relative charge		
		proton		1	+1		
		neutron		1	nil		
		electron	n 1/	1840	-1		
1(b)(i)	M1 <u>atom(s)</u> of the sam M2 with different numb					1	2
1(b)(ii)	M1 (both have) the sau M2 in the outer shell;	me number of ele	ctrons;			1 1	2
1(c)							5
		particle	number of protons	number o neutrons			
		⁷ ₃Li	3	4	3		
		³⁴ 16 S ^{2–}	16	18	18		
		⁴¹ ₁₉ K ⁺	19	22	18		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question	Answer	Marks
2(a)	number of moles of NaNO ₃ used: $3.40/85 = 0.04(00) \text{ (mol)}$ OR $4.(00) \times 10^{-2} \text{ (mol)};$ number of moles of O ₂ formed: $0.04/2 = 0.02(00) \text{ (mol)}$ OR $2.(00) \times 10^{-2} \text{ (mol)};$	3
	volume of O_2 formed: $0.02 \times 24 = 0.48 \text{ (dm}^3$);	
2(b)(i)	(a substance which is) a proton/H⁺/hydrogen ion acceptor;	1
2(b)(ii)	$\begin{array}{rl} Mg(s) \ + \ 2H_2O(I) \ \rightarrow \ Mg(OH)_2(aq) \ + \ H_2(g) \\ Mg(OH)_2; \ rest \ of \ equation; \end{array}$	2
2(c)	M1 add a <i>named</i> acid, e.g. HC <i>l</i> and a named alkali, e.g. NaOH; M2 Al_2O_3 will react with/neutralises both reagents; M3 and so it will dissolve into the reagent/form a solution;	3 1 1 1
2(d)(i)	covalent;	1
2(d)(ii)	any 2 from: high melting point/high boiling point; poor conductor (of electricity); hard; insoluble;	2
2(e)(i)	M1 (electrostatic) <u>attraction;</u> M2 between <u>oppositely charged ions;</u>	2 1 1
2(e)(ii)	Ca ₃ (PO ₄) ₂ ;	1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question	Answer	Marl	ks
2(f)(i)	 S(s) + 2F₂ (g) SF₄ (g) M1 exothermic mark: horizontal product energy line at lower energy than that of reactant energy line; M2 label of product mark: SF₄; M3 correct direction of vertical heat of reaction arrow: arrow must start level with reactant energy and finish level with product energy and must have only one (correct) arrow-head; 	1 1 1	3
2(f)(ii)	M1 bond energy of $2F_2$: 2 × F–F = 2 × 160 = 320 (kJ/mol); M2 bond energy of all bonds in SF ₄ : 780 + 320 = 1100 (kJ/mol); M3 calculated bond energy of SF ₄ divided by 4: 1100/4 = 275 (kJ/mol);	1 1 1	3
2(g)(i)	kills bacteria;		1
2(g)(ii)	name of compound: cobalt(II) chloride; from: blue; to: pink;	1 1 1	3
2(h)(i)	it has a complete outer shell/a full outer shell/8 electrons in the outer shell;		1
2(h)(ii)	(in) lamps;		1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question				Answer	Marks
3(a)	1 Na ₂ S ₂ O ₃ 1 HC <i>l</i> 1 H ₂ O 1 H ₂ O	2 H ₂ O 2 H ₂ O 2 Na ₂ S ₂ O ₃ 2 HC <i>l</i>	3 HC <i>1</i> 3 Na ₂ S ₂ O ₃ 3 HC <i>1</i> 3 Na ₂ S ₂ O ₃	OR OR OR ;	1
3(b)(i)	M1 volumes M2 time = 14	40 : 10 : 10; 4;			2 1 1
3(b)(ii)				es are closer together; re more collisions per unit time;	2 1 1
3(c)	M2 increasir M3 higher p	ng rate of collisi	ticles have suff	fast er ; sions per unit time; icient energy to react/collisions have sufficient energy to react/are	3 1 1 1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question	Answer	Marks
4(a)(i)	reduction and (the Cu ²⁺ ion/copper ions) is gaining electrons/is decreasing in oxidation number;	1
4(a)(ii)	formation of $Cu^{2+}/copper$ ions at the anode happens at the same rate as; removal of $Cu^{2+}/copper$ ions at the cathode ora;	2 1 1
4(b)	replace (anode of) copper with nickel; replace electrolyte with nickel(II) sulfate/NiSO₄;	2 1 1
4(c)	(good) catalysts; variable oxidation numbers; form coloured compounds/coloured ions;	3 1 1 1

PMT

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question	Answer	Marks
5(a)	(sulfur-containing) fossil fuels;	1
5(b)	M1 vanadium pentoxide/vanadium(V) oxide/V ₂ O ₅ (catalyst); M2 1–5 atmospheres (units required); M3 450 °C (units required); M4 2SO ₂ + O ₂ \rightarrow 2SO ₃ ; M5 equilibrium/reversible reaction;	5 1 1 1 1 1
5(c)	$H_2S_2O_7;$	1
5(d)(i)	3 correct (2 marks) 2 correct (1 mark) bubbles/effervescence/fizzing; dissolves/disappears/forms a solution;	2
	blue (solution);	
5(d)(ii)	carbon dioxide and water and copper(II) sulfate;	1
5(e)(i)	carbon;	1
5(e)(ii)	dehydration;	1

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0620	41

Question	Answer	Marks
6(a)	fractional distillation; cracking;	2 1 1
6(b)(i)	addition;	1
6(b)(ii)	CH ₂ ;	1
6(b)(iii)	$\begin{array}{c} H \\ - C \\ -$	2
6(c)		2
6(d)(i)	(concentrated) sulfuric acid;	1
6(d)(ii)	methyl ethanoate;	1
6(d)(iii)	H = C = C = O = C = H H = H = H M1 ester link; M2 rest of molecule;	2
6(d)(iv)	terylene;	1