SurnameCentre
NumberCandidate
NumberOther Names0

GCSE 4471/02

11 11 02

ADDITIONAL SCIENCE/BIOLOGY

BIOLOGY 2 HIGHER TIER

A.M. TUESDAY, 13 May 2014

1 hour

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	7		
2.	6		
3.	5		
4.	6		
5.	6		
6.	9		
7.	7		
8.	8		
9.	6		
Total	60		

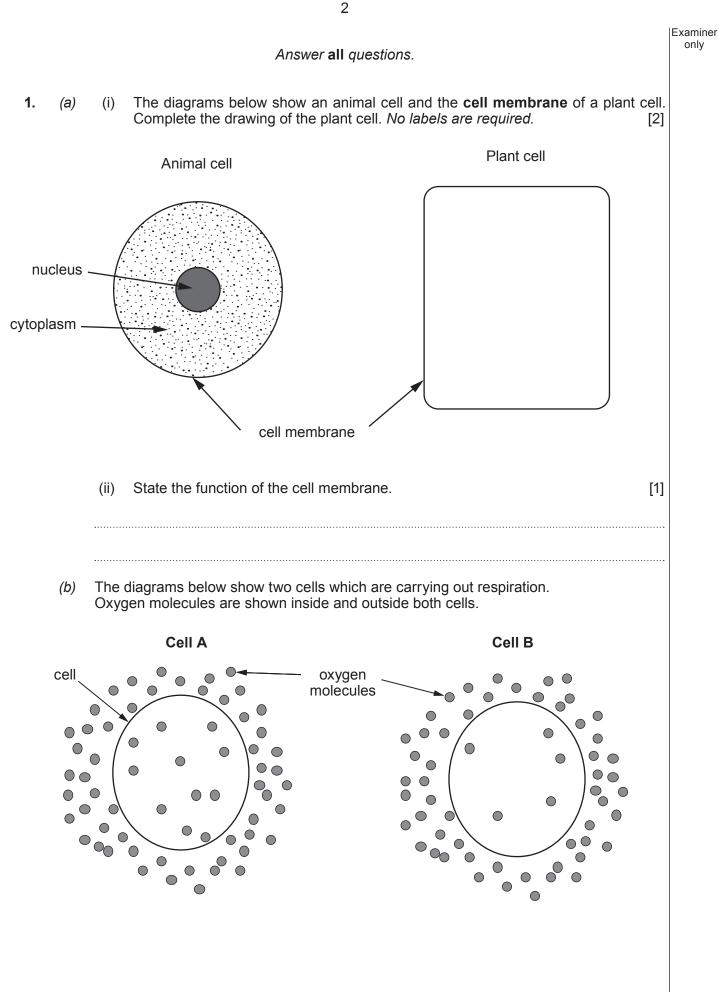
ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

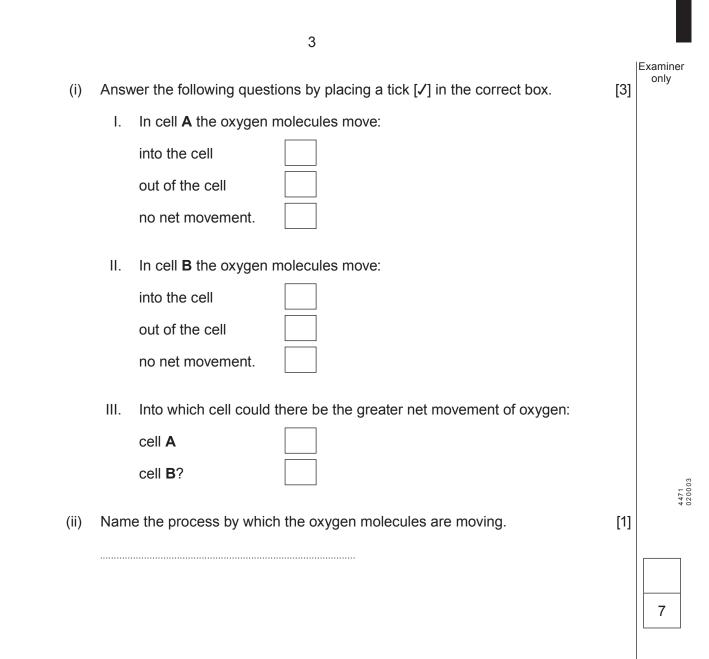
Use black ink or black ball-point pen.

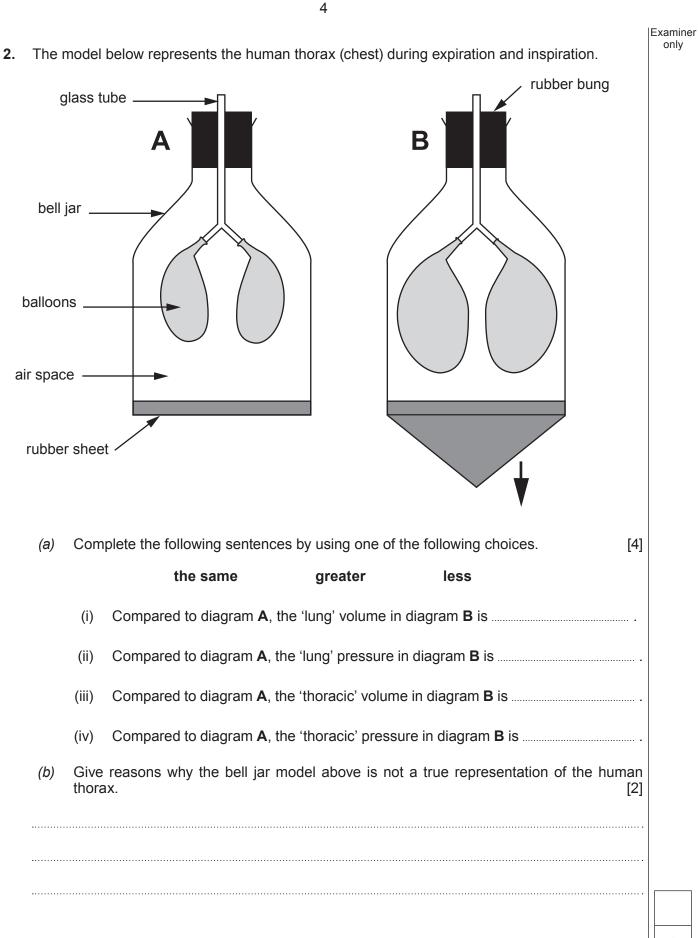
Write your name, centre number and candidate number in the spaces at the top of this page.


Answer **all** questions.

Write your answers in the spaces provided in this booklet.

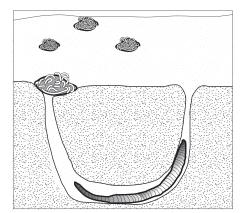
INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

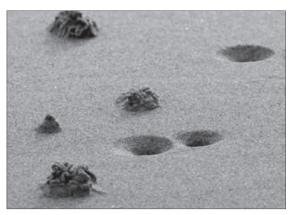

You are reminded that assessment will take into account the quality of written communication used in your answer to question **4** and question **9**.

(4471-02)

© WJEC CBAC Ltd.



BLANK PAGE


Examiner only

3. Lugworms (*Arenicola marina*) live in burrows in the sand on beaches. At one end of the burrow is a hole and at the other end is a mound of sand, called the cast, which the lugworm has removed from the burrow. Each burrow is occupied by one lugworm only.

Burrow in section

Surface view

© Alan Gravell

Owen was asked by his teacher to estimate the number of lugworms, on a section of Whiteford Beach on Gower, by counting the number of casts.

Owen decided to use $1 \, m^2$ quadrats to estimate the number of lugworms present in an area of the beach measuring $80 \, m \times 40 \, m$.

(a) Which of the following methods would be the correct way for Owen to use the quadrats to sample the number of lugworms? [1]

Tick (\checkmark) the correct answer.

method	tick (✓)
Place the quadrats where there are lots of casts	
Place the quadrats randomly within the sample area	
Place the quadrats carefully so as not to damage the casts	

4471 020007

Examiner only

(b) Owen counted the number of casts in 10 quadrat samples. The table below shows his results.

quadrat number	number of casts
1	5
2	7
3	1
4	11
5	4
6	6
7	9
8	4
9	13
10	2
Mean	

- (i) Complete the table above by calculating the mean number of casts per quadrat of Owen's samples. [1]
- (ii) Estimate the number of lugworms in the section of the beach by using the following equation: [2]

Estimated		Mean number of		Area of section
number of	=	casts per quadrat	×	of beach
lugworms				

Estimated number of lugworms

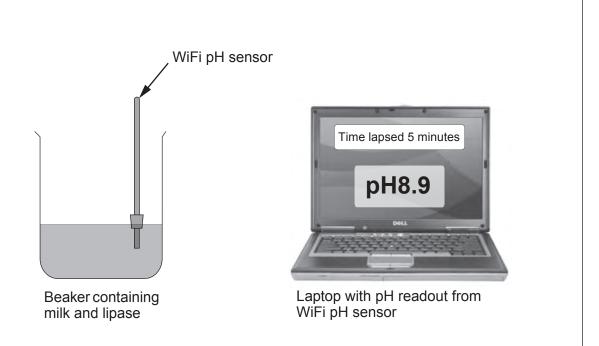
(c) Suggest why this method of sampling would **not** be suitable for estimating the population of earthworms in an area of grassland. [1]

8 Examiner only Describe the method involved in testing a leaf for the presence of starch. Each of the stages involved in the method should be described in sequence and the reason for carrying out each stage should be included. Your description must include reference to the colour changes shown by the leaf and what these [6 QWC]

.....

6

4.

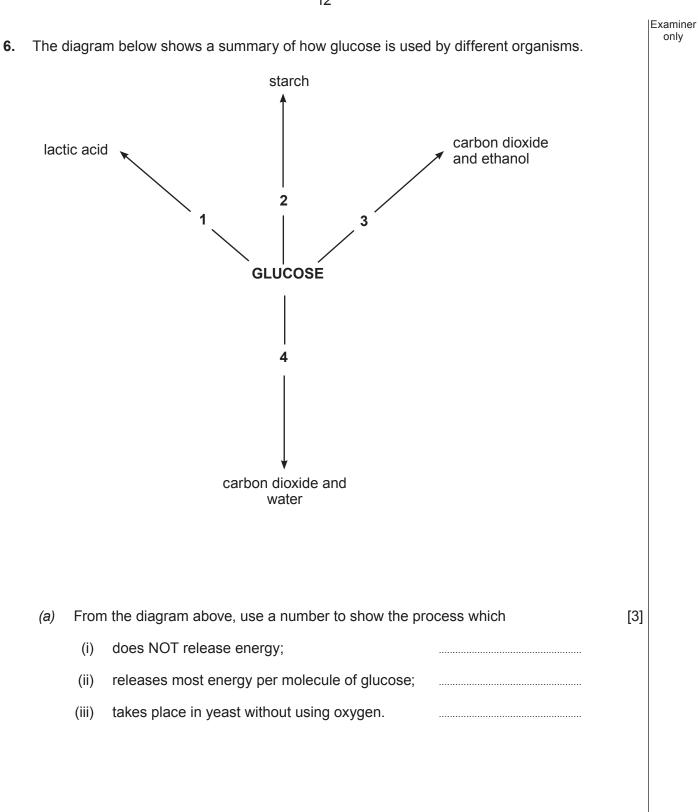

changes indicate.

BLANK PAGE

Examiner

5. An experiment was set up to investigate the digestion of fat in milk by lipase. The following apparatus was used.

The beaker containing milk and lipase was kept at a constant temperature in a water bath. The pH readout on the laptop was recorded every 5 minutes for 40 minutes. The results are shown below.


time (minutes)	рН
0	9.1
5	8.9
10	8.8
15	8.7
20	8.6
25	7.5
30	7.0
35	6.4
40	5.9

(a) Explain why the pH changed during the experiment.

[2]

(b)	(i)	The average rate of fall in pH in the first 20 minutes is 0.025 pH units per minute. After 20 minutes bile was added to the beaker. Calculate the average rate of fall in pH units per minute in the 20 minutes after the bile was added. [1]	Examiner only
		pH units per minute	
	(ii)	Explain why the rate of fall in pH increased when bile was added. [3]	
	·····		
	•••••		

(4471-02)

Examiner

- (b) An athlete ran a 100 m race. The table below shows events which occurred in her body from the start of the race to the end of the recovery period after the race. The events below are given letters but are NOT in the correct order in which they occurred.
 - A She breathes oxygen rapidly and respires aerobically.
 - B Her oxygen debt is repaid.
 - C Her muscles ache.
 - D Lactic acid is produced.
 - E She begins anaerobic respiration in her muscles.
 - F She breathes slowly and respires aerobically.

Arrange the events above in the correct order in which they occurred by writing the correct letter in the appropriate box in the table below. *One has been done for you.* [4]

order of events	letter
1 st	F
2 nd	
3 rd	
4 th	
5 th	
6 th	

Examiner

(c) Some year 11 students had their rates of breathing measured before and after running on the spot for three minutes.
 The following bar chart shows the increase in breathing rates of the students after they had finished running.

5 Number of students 4 3 2 1 0 10 12 14 16 18 20 22 24 26 Number of extra breaths per min after running on the spot for 3 minutes

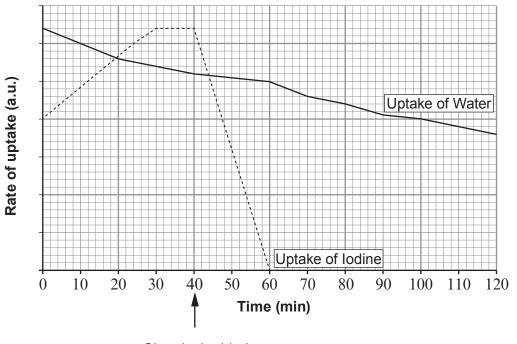
(i) How many students had their breathing rates measured?

 (ii) The average breathing rate for a physically fit year 11 student is 18 breaths per minute at rest. This rises to 36 breaths per minute after running on the spot for three minutes.
 Scientists consider that physically fit year 11 students take a maximum of 18 extra breaths per minute after running on the spot for three minutes.

Use the bar chart to calculate how many of the students may be physically **unfit**.[1]

..... students

9


[1]

BLANK PAGE

7. Kelp, *Laminaria digitata*, is an alga which lives in the sea.

The graph below shows the rate of uptake of water and iodine from sea water into kelp in a laboratory.

Chemical added

Examiner

At forty minutes, a chemical was added to the sea water which stopped respiration taking place in the cells of the kelp.

- (i) Use the graph opposite to describe the effect of adding the chemical on the uptake of iodine and water. [3]
 (ii) Explain the effect of adding the chemical on the uptake of iodine. [3]
- (b) What process is responsible for the uptake of the water?

[1]

(a)		NA there is a genetic code whic d together to form proteins.	h determines the order in whic	h certain chemicals are		
	(i)	Name the four bases which r	nake up the genetic code in D	NA. [2]		
	(ii) Name the types of chemicals which are linked together to form proteins.			orm proteins. [1]		
<i>(b)</i> Name the type of cell division responsible organisms.				ribe its significance in [2]		
	In ea	ach cell some genes are active	e and some are not. The nun	ber of active genes in		
		In each cell some genes are active and some are not. The number of active genes in some types of cells are shown in the table below:				
		types of cells	number of active genes]		
		liver	2091			
		kidney	712			
		kidney heart	712 1195	-		
		heart	1195			
(c)		heart pancreas	1195 1094 297	st enzymes and explain [3]		
(c)		heart pancreas small intestine the data above to suggest which	1195 1094 297			
(c)		heart pancreas small intestine the data above to suggest which	1195 1094 297			
(c)		heart pancreas small intestine the data above to suggest which	1195 1094 297			

Examiner only

[6 QWC]

9. A student used red blood cells to carry out an investigation into cell membranes. Red blood cells were placed in salt solutions at three different concentrations. A sample of red blood cells was then removed from each concentration and placed on a microscope slide. The cells were viewed using a microscope for a period of time. The observations were recorded in a table:

concentration of salt solution (%)	observation of red blood cells
0.0	swell and burst
0.9	remain the same size
3.0	smaller and shrivelled

Explain the observations shown in the table.

END OF PAPER

© WJEC CBAC Ltd.