

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/13

Paper 1 Multiple Choice May/June 2012

45 Minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

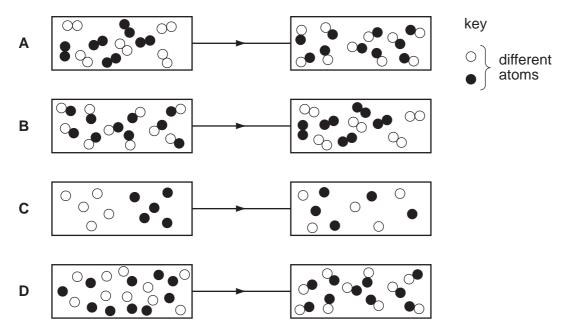
There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

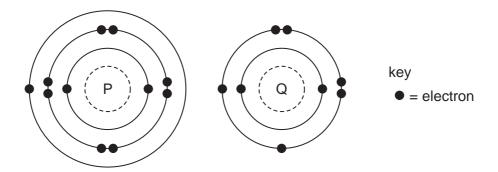

A copy of the Periodic Table is printed on page 16.

You may use a calculator.

2

1 Which diagram shows the process of diffusion?

2 A student investigates how the concentration of an acid affects the speed of reaction with a 0.5 g mass of magnesium at 30 °C.


The student has a beaker, concentrated acid, water and the apparatus below.

- P a balance
- Q a clock
- R a measuring cylinder
- S a thermometer

Which pieces of apparatus does the student use?

- A P, Q and R only
- B P, Q and S only
- C Q, R and S only
- D P, Q, R and S
- **3** Which method is most suitable to obtain zinc carbonate from a suspension of zinc carbonate in water?
 - A crystallisation
 - **B** distillation
 - **C** evaporation
 - **D** filtration

4 The electronic structures of atoms P and Q are shown.

P and Q react to form an ionic compound.

What is the formula of this compound?

- A PQ₂
- $\mathbf{B} \quad \mathsf{P}_2\mathsf{Q}$
- \mathbf{C} P_2Q_6
- $\mathbf{D} \quad \mathsf{P}_6\mathsf{Q}_2$

5 An element Y has the proton number 18.

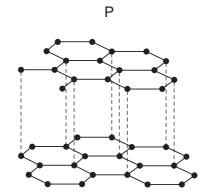
The next element in the Periodic Table is an element Z.

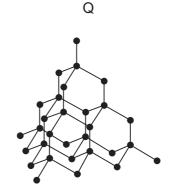
Which statement is correct?

- A Element Z has one more electron in its outer shell than element Y.
- **B** Element Z has one more electron shell than element Y.
- **C** Element Z is in the same group of the Periodic Table as element Y.
- **D** Element Z is in the same period of the Periodic Table as element Y.
- 6 Which atom has twice as many neutrons as protons?
 - **A** ¹₁H
- \mathbf{B} $^{2}_{1}H$
- C 3+
- \mathbf{D} ⁴₂He

7 Which is a simple covalent molecule?

	conducts	volatile	
	when solid	when molten	voiatile
Α	✓	✓	X
В	✓	X	✓
С	X	✓	X
D	X	X	✓

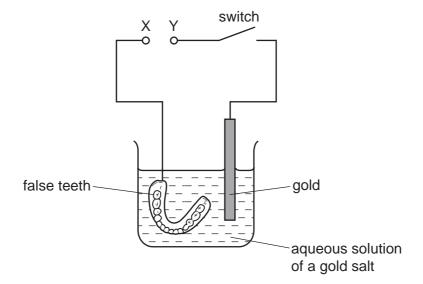

8 The equation for the reaction between magnesium and dilute sulfuric acid is shown.


Mg +
$$H_2SO_4 \rightarrow MgSO_4 + H_2$$
 $M_r \text{ of } MgSO_4 \text{ is } 120$

Which mass of magnesium sulfate will be formed if 12 g of magnesium are reacted with sulfuric acid?

- **A** 5g
- **B** 10g
- **C** 60 g
- **D** 120 g

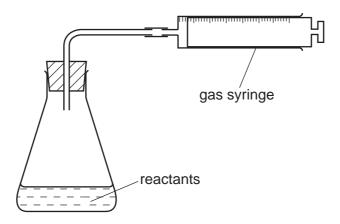
9 The diagrams show the structures of two forms, P and Q, of a solid element.



What are suitable uses of P and Q, based on their structures?

	use of solid P	use of solid Q
Α	A drilling drill	
В	lubricating	drilling
С	drilling	lubricating
D	lubricating	lubricating

10 Winston Churchill, a British Prime Minister, had his false teeth electroplated with gold.

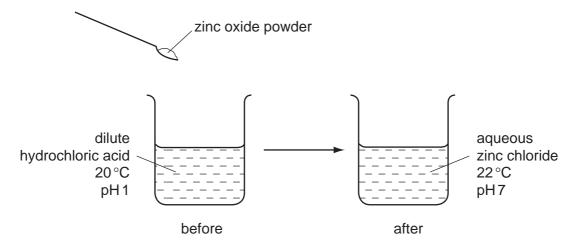

The teeth were coated with a thin layer of carbon and were then placed in the apparatus shown.

Which row is correct?

	terminal X is	the carbon powder could be
Α	negative	diamond
В	negative	graphite
С	positive	diamond
D	positive	graphite

11 The apparatus shown is used to measure the speed of a reaction.

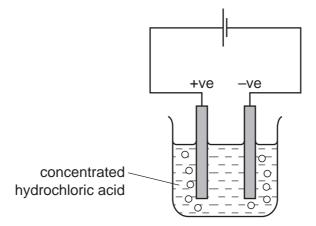
Which equation represents a reaction where the speed can be measured using this apparatus?


A Mg(s) + 2HC
$$l(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

B
$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(I)$$

C Fe(s) + CuSO₄(aq)
$$\rightarrow$$
 Cu(s) + FeSO₄(aq)

D
$$2Na(s) + Br_2(l) \rightarrow 2NaBr(s)$$


12 The diagram shows the reaction between zinc oxide and dilute hydrochloric acid.

Which terms describe the reaction?

	endothermic	neutralisation	
Α	✓	✓	
В	✓	x	
С	x	✓	
D	X	X	

13 The diagram shows that two gases are formed when concentrated hydrochloric acid is electrolysed using inert electrodes.

Which row correctly describes the colours of the gases at the electrodes?

	anode (+ve)	cathode (-ve)
Α	A colourless colourle	
В	colourless	yellow-green
C yellow-green colour		colourless
D	yellow-green	yellow-green

14 A gas is escaping from a pipe in a chemical plant.

A chemist tests this gas and finds that it is alkaline.

What is this gas?

- A ammonia
- **B** chlorine
- C hydrogen
- **D** sulfur dioxide
- **15** The element vanadium, V, forms several oxides.

In which change is oxidation taking place?

- $A \quad VO_2 \quad \rightarrow \quad V_2O_3$
- $\textbf{B} \quad V_2O_5 \ \rightarrow \ VO_2$
- $\boldsymbol{C} \quad V_2O_3 \ \rightarrow \ VO$
- $\textbf{D} \quad V_2O_3 \ \rightarrow \ V_2O_5$

16 Dilute hydrochloric acid is added to a solid, S.

A flammable gas, G, is formed. Gas G is less dense than air.

What are S and G?

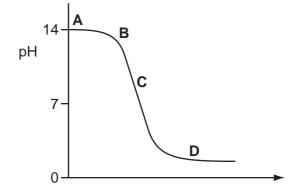
	solid S	gas G	
Α	copper	hydrogen	
В	copper carbonate	carbon dioxide	
С	C zinc hydroger		
D	zinc carbonate	carbon dioxide	

17 The results of three tests on a solution of compound X are shown in the table.

test	result	
aqueous sodium hydroxide added	white precipitate formed, soluble in excess	
aqueous ammonia added	white precipitate formed, insoluble in excess	
acidified silver nitrate added	white precipitate formed	

What is compound X?

A aluminium bromide

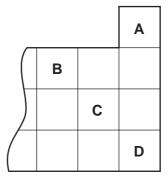

B aluminium chloride

C zinc bromide

D zinc chloride

18 The graph shows how the pH changes as an acid is added to an alkali.

Which letter represents the area of the graph where both acid and salt are present?


19 Which properties of the element titanium, Ti, can be predicted from its position in the Periodic Table?

	can be used as a catalyst	conducts electricity when solid	has low density	forms coloured compounds
Α	✓	✓	X	✓
В	✓	✓	✓	x
С	✓	×	✓	✓
D	x	✓	✓	✓

20 The diagram shows a section of the Periodic Table.

Which element is described below?

'A colourless, unreactive gas that is denser than air.'

21 Element X is below iodine in the Periodic Table.

Which row correctly shows the physical state of element X at room temperature and its reactivity compared with that of iodine?

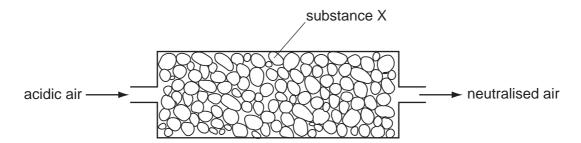
	physical state of element X at room temperature	reactivity compared with that of iodine
Α	gas	less reactive
В	solid	less reactive
С	gas	more reactive
D	solid	more reactive

- 22 Which property is shown by all metals?
 - **A** They are extracted from their ores by heating with carbon.
 - **B** They conduct electricity.
 - C They form acidic oxides.
 - **D** They react with hydrochloric acid to form hydrogen.
- 23 Five elements have proton numbers 10, 12, 14, 16 and 18.

What are the proton numbers of the three elements that form oxides?

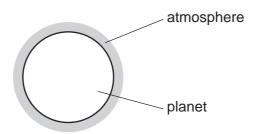
- **A** 10, 12 and 14
- **B** 10, 14 and 18
- **C** 12, 14 and 16
- **D** 14, 16 and 18
- 24 Metal X reacts violently with water.

Metal Y reacts slowly with steam.


Metal Z does not react with dilute hydrochloric acid.

What is the correct order of reactivity of these metals, most reactive first?

- $A X \to Y \to Z$
- **B** $X \rightarrow Z \rightarrow Y$
- $\mathbf{C} \quad Z \to X \to Y$
- $D \quad Z \to Y \to X$
- 25 Which statement about the extraction of iron from its ore is correct?
 - A Iron is more difficult to extract than zinc.
 - **B** Iron is more difficult to extract than copper.
 - **C** Iron is easy to extract because it is a transition metal.
 - **D** Iron cannot be extracted by reduction with carbon.
- 26 Which statement about the uses of metals is correct?
 - A Aluminium is used in the manufacture of aircraft as it has a high density.
 - **B** Aluminium is used to make food containers as it conducts electricity.
 - **C** Stainless steel for cutlery is made by adding other elements to iron.
 - D Stainless steel is used to make chemical reactors as it corrodes readily.


27	Fer	ertilisers need to supply crops with three main elements.						
	Wh	Which compound contains all three of these elements?						
	A	H ₃ PO ₄	В	KNO_3	С	NH ₄ K ₂ PO ₄	D	NH ₄ NO ₃
28	Soi	me uses	of water are	listed.				
		1	for drinking	9				
		2	in chemica	I reactions				
		3	in swimmir	ng pools				
		4	in washing					
	For	which u	ses is it nec	essary to c	hlorinate	the water?		
	Α	1 and 2	В	1 and 3	С	2 and 4	D	3 and 4
29	Wh	ich is a u	use of oxyge	n?				
	Α	filling ba	alloons					
	В	filling lig	ght bulbs					
	С	food pre	eservation					
	D	making	steel					
30	Coa	al is a fos	ssil fuel.					
	Wh	ich gas i	s not forme	d when coa	al burns?			
	A	carbon	dioxide					
	В	carbon	monoxide					
	С	methan	е					
	D	sulfur d	ioxide					

31 Air containing an acidic impurity was neutralised by passing it through a column containing substance X.

What is substance X?

- A calcium oxide
- **B** sand
- C sodium chloride
- D concentrated sulfuric acid
- **32** A new planet has been discovered and its atmosphere has been analysed.

The table shows the composition of the atmosphere.

gas	percentage by volume
carbon dioxide	4
nitrogen	72
oxygen	24

Which gases are present in the atmosphere of the planet in a higher percentage than they are in the Earth's atmosphere?

- A carbon dioxide and oxygen
- **B** carbon dioxide only
- C nitrogen and oxygen
- **D** nitrogen only

33 The structure of a compound is shown.

Which functional groups are present in this compound?

	alcohol	alkene	carboxylic acid
Α	✓	✓	✓
В	✓	x	x
С	×	✓	✓
D	×	X	✓

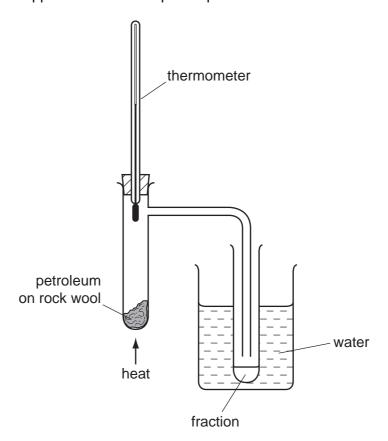
34 Gas X is a waste gas from digestion in animals.

Gas Y is formed when gas X is burnt with a small amount of oxygen.

Gas Z is formed when gas X is burnt with an excess of oxygen.

What are X, Y and Z?

	Х	Υ	Z
Α	carbon dioxide	methane	carbon monoxide
В	carbon monoxide	methane	carbon dioxide
С	methane	carbon dioxide	carbon monoxide
D	methane	carbon monoxide	carbon dioxide


35 Which fraction from the fractional distillation of petroleum does **not** match its correct use?

	fraction	use
Α	fuel oil	domestic heating
В	kerosene	jet fuel
С	naphtha	making roads
D	refinery gas	for heating and cooking

- **36** When a long chain hydrocarbon is cracked, the following products are produced.
 - 1 C₃H₈
 - 2 C₂H₄
 - 3 C₃H₆
 - 4 C₂H₆

Which products would decolourise bromine water?

- **A** 1 and 4
- **B** 2 and 3
- C 2 only
- **D** 3 only
- 37 The diagram shows apparatus used to separate petroleum into four fractions.

Which fraction contains the smallest hydrocarbon molecules?

fraction	boiling point range/°C
Α	up to 70
В	70 to 120
С	120 to 170
D	over 170

PMT

38 PVA is a polymer. The monomer has the structure shown.

$$C = C$$

To which homologous series does this compound belong?

	alcohols	alkenes
Α	✓	✓
В	✓	x
С	X	✓
D	X	X

39 Ethanol is an important chemical produced by the1..... of2......

Which words correctly complete gaps 1 and 2?

	1	2
Α	combustion	ethane
В	combustion	glucose
С	fermentation	ethane
D	fermentation	glucose

40 Which equation represents incomplete combustion of ethane?

$$\textbf{A} \quad C_2H_6 \ + \ O_2 \ \rightarrow \ 2CO \ + \ 3H_2$$

B
$$C_2H_6 + 2O_2 \rightarrow 2CO_2 + 3H_2$$

C
$$2C_2H_6 + 5O_2 \rightarrow 4CO + 6H_2O$$

$$D \quad 2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$$

© UCLES 2012

DATA SHEET
The Periodic Table of the Elements

:								้อ	Group			:		;	;	;	,
=												=	≥	>	5	=	0
-	-	-	-		-	-	T Hydrogen										4 He Helium
9 Berylium 4								1				11 Boron	12 C Carbon 6	14 N itrogen 7	16 Oxygen	19 T Fluorine	20 Ne on 10
Ng Magnesium	e											27 A1 Auminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
39 40 45 48 51 52 55 55 K Ca Scandium Titanium Vanadium Chromium Manganese 26 19 20 21 22 23 24 25 26 20 21 22 23 24 25 26 26	45 48 51 52 55 Sc Ti V Cr Mn Scandium Vanadium Chromium Manganese 21 22 23 24 25	48 51 52 55 Ti V Cr Mn Itanium Vanadum Chromium Manganese 23 24 25	51 52 55 V Cr Mn nadium Chromium Manganese 24 25 25 26 26 26	55 55 Cr Mn Manganese 26 26	56	7 7	56 Fe	59 Co	59 Nickel 28	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium	AS Asenic 33	Selenium 34	80 Br Bromine	84 Krypton 36
88 89 91 93 96 Sr Y Zr Nb Mo TC Strontum Yttrium Zirconium Vilobium Nobycderum Technetium Fednetium 38 40 40 41 42 43 44	89 91 93 96 Y Zr Nb Mo Tc Y Zirconium Niobium Molyddenum Technetum 39 40 41 42 43	2r Nb Mo Tc conium Nicbium Molybdenum Technetum 41 42 42 43	93 96 Nb Mo Tc robium Nobybdenum Technetum 42 43 43	Tc Technetium 43	Tc Technetium 43	Ruth A			106 Pd Palladium 46	108 Ag Silver 47	Cadmium Cadmium 48	115 n Indium	Sn Tin	122 Sb Antimony 51	128 Te Tellurium	127 	131 Xe Xenon 54
137 139 178 181 184 186 190 Ba La Hf Ta W Re Os Bartum Lantharum Hafmium Tannatum Tannatum <td>La Hf Ta W Re Lanthanum Halnium Tantalum Tungsten Thentum 57 * 72 73 74 75</td> <td>178 181 184 186 Hf Ta W Re Hatnium Tantalum Tungsten TRentum 72 73 74 75</td> <td>181 184 186 Ta W Re antalum Tungsten 74 75</td> <td>184 186 W Re ungsten Rhenium</td> <td></td> <td>190 08 Osmit 76</td> <td>- 10 [§]</td> <td>192 F Iridium 77</td> <td>195 Pt Platinum 78</td> <td>197 Au Gold</td> <td>201 Hg Mercury 80</td> <td>204 T 1 Thallium 81</td> <td>207 Pb Lead</td> <td>209 Bi Bismuth 83</td> <td></td> <td>At Astatine 85</td> <td>Radon 86</td>	La Hf Ta W Re Lanthanum Halnium Tantalum Tungsten Thentum 57 * 72 73 74 75	178 181 184 186 Hf Ta W Re Hatnium Tantalum Tungsten TRentum 72 73 74 75	181 184 186 Ta W Re antalum Tungsten 74 75	184 186 W Re ungsten Rhenium		190 08 Osmit 76	- 10 [§]	192 F Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead	209 Bi Bismuth 83		At Astatine 85	Radon 86
Fr Radum Actinium Actinium Actinium	227 Ac ¤tinium																
*58-71 Lanthanoid series Ce Pr Nd Pm 144 Pm 1590-103 Actinoid series Se Se Se Drawbymium Series Se	Ce Pr Nd Cerium Praseodymium Neodymium 58 59 60	140 141 144 Ce Pr Nd Derium Praseodymium 60	140 141 144 Ce Pr Nd Derium Praseodymium 60	Neodymium 60	Neodymium 60	Pn Promett 61	C mnic	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	Lu Lutetium 71
a a = relative atomic mass z32 238 V Np X X = atomic symbol Th Protactinium U Np b = proton (atomic) number 91 91 92 93	232 Page 238 Thorium Protectinium Utanium 90	232 Page 238 Thorium Protectinium Utanium 90	232	238 U Uranium 92	238 N U Neptu Uranium Neptu 93	Neptu 93	Ω mniu	Pu Plutonium 94	Am Americium 95	Curium 96	BK Berkelium 97	Californium 98	ES Einsteinium 99	Fm Fermium	Md Mendelevium 101	Nobelium	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.