June 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/03

PHYSICS

Paper 3 (Extended)

	Page	1	Mark Scheme	Syllabus	Paper
			PHYSICS - JUNE 2004	0625	3
4	(-)	<i>(</i> 1)	A contraction the contraction of	11 4	
1	(a)	(i)	Acceleration / increase in speed	M1 A1	
		(ii)	Uniform / constant or in a straight line Uniform speed	B1	
		(,	Velocity changes / motion in a circle / accelerates	B1	4
	(b)		Similarity: same value / 6m/s or velocity changing	B1	
		413	Difference: opposite directions / up at E, down at C	B1	2
	(c)	(i)	Average speed x time / area under graph / 3 x 20 60 m	C1 A1	
		(ii)	6 x 52	C1	
		(,	312m	A1	4
					[10]
2	(a)		750 N	A 1	1
	(b)		p.e. lost / converted = mgh or weight x height	C1	
			750 x 15 or 75 x10 x15 = 11250 (J)	C1	
			p.e. lost = k.e. gained = 11250 (J)	A 1	3
	(c)		Any 3 of: heat in water / rock (kinetic) energy of (moved) water / to make water movemake waves some k.e. still in (sinking) rock	/e/	
			sound energy on impact / of splash	B3	3
			(just heat and sound C1)		r - 1
3	(a)	(i)	Extension proportional to load however expressed	В1	[7]
J	(a)	(ii)	Any relevant arithmetic to show direct proportion (or	B1	2
		(11)	straight line graph with values)	ы	2
	(b)	(i)	Work done = force x distance / 400 x 0.210	C1	
			84.0 J	A 1	
		(ii)	(total) work/time or (24 x) 84/60 (apply e.c.f from (i))	C1	4
			33.6 W	A 1	4 [6]
4	(a)		Water molecules at higher temps. have higher (av) k.c / energy	e. B1	
			Higher energy molecules (have greater chance to) escape the surface Higher energy molecules have energy to break liquid "bonds" or separate liquid molecules or more	В1	
			evaporation at 85°C (lowers level)	B1	3
	(b)		Heat for evaporation = 34 500 – 600 = (33 900)	C1	
			Sp. latent heat of evaporation = heat/mass evap. or 33 900 / 15	C1	
			2260 J/g (method and working correct, but no heat los used, 2/3)	ss A1	
			,		_
			(600 added or 34 500 used can score 2 max)		3

	Page 2		Mark Scheme	Syllabus	Paper
			PHYSICS - JUNE 2004	0625	3
5	(a)	(i)	Thermopile / thermocouple / (blackened) thermomete infra red detector or use ammeter / voltmeter in supply	у	
		(ii)	One of: same distance of plate to detector or use two		
		(iii)	identical detectors or same time (after switching on) Dull black better radiator / radiates more than silver /		
		(iv)	emits more heat / radiation Infra red (i.r.)	B1 A1	4
	(b)		any correct example e.g. heating water or chimney	M1	
			current clear and complete direction shown correctly by arrows	A1 A1	3 [7]
6	(a)	(i)	Refraction at Q approx. correct, ray emerge from AB parallel PQ	В1	
		(ii)	Angle of incidence correctly marked Angle of refraction correctly marked	B1 B1	
			(can score even if incorrect / no refraction shown)		3
	(b)	(i) (ii)	Refractive index = speed in air / speed in glass Refractive index = $(3 \times 10^8/2 \times 10^8) = 1.5$	B1 B1	2
	(c)	(i)	Wavelength = v/f or $3 \times 10^8/6 \times 10^{14}$ Wavelength = 5×10^{-7} m	C1 A1	2 [7]
7	(a)		C,R,C,R,C,R marked (or v.v.) along XY	B1	1
	(b)	(i)	Above normal / high air pressure or particles close together	B1	
		(ii)	Below normal / low pressure or particles further apart	B1	2
	(c)		Oscillation / vibration of particles / molecules (or particles / molecules move to and fro) Oscillation is along XY	B1 B1	2
	(d)		Time = distance / speed or (2x) 50/340 Time = 0.29 s	C1 A1	2

	Page	3	Mark Scheme PHYSICS - JUNE 2004	Syllabus 0625	Paper 3
8	(a)		1.52 kW	A1	1
	(b)	(i) (ii)	Each appliance is connected across 240 V supply or equivalent Any 2: all work on same voltage or on 240 V or mains OR all have full/stated power OR each can be on or o OR one goes off/breaks others stay on		3
	(c)	(i) (ii) (iii)	Current = power/voltage or 200/240 Current = 0.83 A Energy = power x time or 1.2 x 3 Energy = 3.6 kWh or 1.3 x 10^7 J Current = $60/240$ R= V/I or $240/0.25$ R = 960Ω	C1 A1 C1 A1 C1 C1	7
9	(a)		Solenoid ends connected to meter, both labelled One magnet in correct position to enter / leave solenoid, labelled	B1 B1	[11]
	(b)		Push magnet into coil / pull out / move near end of coi	l B1	1
	(c)		(magnet has / produces) magnetic lines of force / magnetic field lines cut (coils of) solenoid / coils / wires	B1 B1	2
	(d)	(i) (ii)	Pull magnet out of coil / <u>reverse</u> effect to answer (b) Move magnet faster or effect in (a) faster	B1 B1	2 [7]
10	(a)		Analogue, continuously increasing / decreasing readings Digital, readings increase / decrease by one unit	B1 B1	2
	(b)	(i) (ii) (iii)	Transistors + other components such as resistors Standard symbol, must have labeled inputs and output Both inputs 0 (off), or either one input 0 (off), output 0	B1 t B1	
		(,	(off) Both inputs 1 (on), output 1 (on) OR correct truth table drawn (C1) Some explanation of what truth table shows (A1)	B1 B1	4
					[6]
11	(a)		Particle 1 carries <u>straight on</u> Particle 2 (slightly) deflected (less than 90°) Particle 3 "turns back" / (deflected more than 90°)	B1 B1 B1	3
	(b)		Nucleus is heavy /dense / all or most of mass in atom nucleus Most of atom is space or nucleus is (very) small	B1	_
			cf. atom	B1	2
	(c)		(mass) 4	B1	1 [6]

Page 4	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	3

PAPER TOTAL = [80]