

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4CH1_2C_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as
 they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	 D is the correct answer because protons occur in the nucleus and have a positive charge. A is not the correct answer since electrons occur in the energy levels. B is not the answer since ions do not occur in the nucleus. C is not the correct answer since neutrons have no charge. 		1
(ii)	7		1
(iii)	lithium	ALLOW Li	1
(b) (i)	M1 same number of protons	ALLOW same number of electrons	2
	M2 different number of neutrons	IGNORE references to mass number and atomic number.	
			5 marks

Question number	Answer	Notes	Marks
2 (a) (i)	nitrogen	ALLOW N ₂ /N	1
(ii)	carbon dioxide	ALLOW CO ₂	1
(iii)	argon	ALLOW Ar	1
(iv)	carbon dioxide	ALLOW CO ₂	1
(b)	lighted splint (produces squeaky) pop		1
	•	•	5 marks

Question number	Answer	Notes	Marks
3 (a) (i)	Any two from:		2
	M1 volume of acid		
	M2 temperature		
	M3 mass / moles of magnesium		
	M4 surface area / size of pieces of magnesium		
(ii)	so as little gas as possible escapes	ALLOW so no gas escapes IGNORE references to accuracy REJECT references to	1
		gas getting in	
(b) (i)	M1 (69 + 70 + 71) ÷ 3 M2 70s	Answer of 70 with or without working scores 2	2
		Answer of 76 or 75.8 or 75.75 with or without working scores 1	
(ii)	as the (number of) carbons increases the time (to produce 10 cm ³ of hydrogen) increases ORA		1
(c)	M1 ester linkage as a displayed structure O-C-O-		2
	M2 rest of molecule correct as a fully displayed structure H H H H H H H H H H H H H H H H H H H		
			8 marks

Question number	Answer	Notes	Marks
4 (a) (i)	2 Na(s) + 2 H ₂ O(l) \rightarrow 2 NaOH(aq) + H ₂ (g)		2
	M1 correct balancing numbers	ALLOW multiples or fractions.	
	M2 (s) and (aq) for state symbols		
(ii)	hydroxide or OH-	REJECT OH	1
(iii)	Any three from:		3
	M1 the sodium moves (on the surface)	ALLOW sodium floats	
	M2 effervescence or bubbles (of gas)	IGNORE gas or hydrogen produced	
	M3 (indicator or phenolphthalein or water) turns pink	IGNORE initial colour of indicator	
	M4 the sodium gets smaller	ALLOW the sodium disappears / (appears to) dissolve	
	M5 the sodium melts or turns into a ball		
(b)	M1 electron configuration of sodium is 2,8,1 and electron configuration of potassium is 2,8,8,1	ALLOW the outer shell is further from the nucleus ALLOW potassium has more shells ALLOW larger atom / larger atomic radius	3
	M2 outer electron less attracted (to the nucleus of potassium)		
	M3 therefore (outer shell electron) is more easily	ALLOW reverse	
	lost	argument for sodium	
			9 marks

Question number	Answer	Notes	Marks
5 (a) (i)	M1 layers / rows (of atoms / ions) M2 can slide over one another	M2 is dependent on mention of layers / rows in M1	2
(ii)	M1 delocalised electrons M2 can move / can flow / are free to move (throughout the structure)	IGNORE references to charge or current IGNORE free electrons M2 dependent on mention of electrons in M1	2
(b)	aluminium is more reactive than carbon	ALLOW references to position in reactivity series e.g. aluminium is higher in reactivity series than carbon. ALLOW carbon is less reactive than aluminium	1
(c) (i)	M1 aluminium / Al³+ions are attracted to the negative electrode / cathode (because they are positively charged) M2 where they gain electrons (forming aluminium)	ALLOW Al ³⁺ + 3e ⁻ →Al IGNORE references to reduction	2
(ii)	$20^{2-} \rightarrow O_2 + 4e^{-}$	ALLOW $20^{2-} - 4e^{-} \rightarrow 0_{2}$	1
(iii)	M1 electrodes are made of carbon M2 which reacts with / burns in oxygen		2

(d) (i)	iron oxide loses oxygen	IGNORE references to electrons	1
(ii)		Cicca on S	3
(11)	aluminium + iron oxide	IGNORE horizontal axis drawn	
		IGNORE activation energy if shown	
	iron + aluminium oxide		
	M1 right hand line below left hand line		
	M2 correct name / formula of both reactants		
	M3 correct name / formula of both products	If only use words reactants (on left) and products (on right) award 1 mark from M2 and M3	
		M2 and M3 can be scored from an endothermic diagram	
		J	14 marks

Question number	Answer	Notes	Marks
6 (a)	M1 mix / stir / add (silver nitrate and copper (II) chloride) M2 filter (the silver chloride) M3 wash with (deionised / distilled) water M4 dry in a warm oven or dry with filter paper or leave / allow to dry (on a windowsill) or dry in a desiccator	IGNORE references to heating If evaporation is mentioned to form crystals max = 1	4
(b) (i) (ii)	M1 and M2 all points correctly plotted to ± half a square M3 two straight lines of best fit which must meet at 3 cm and 6 cm ³ Any one from:	Deduct 1 mark for every incorrect point.	2 1
	the precipitate wasn't left to settle (for long enough) the tube was on a slant not enough / less than 3.0 cm³ of silver nitrate added	ALLOW measured the height too early IGNORE references to human error unqualified	
(iv)	all the copper [(II)] chloride has reacted	ALLOW the silver nitrate is in excess / not all the silver nitrate has reacted	1

Question number	Answer	Notes	Marks
(c) (i)	Any one from:		1
	burette	ALLOW measuring cylinder	
	(volumetric) pipette	REJECT beaker	
(ii)	Example calculation		3
	M1 moles of coper chloride = $(25 \times 0.50) \div 1000$ OR 0.0125 moles		
	M2 moles of silver chloride = 0.0250	ALLOW answer to M1 x 2	
	M3 mass of silver chloride = 3.59 g	ALLOW answer to M1 or M2 × 143.5 ALLOW 2 or more significant figures	
		Correct answer of 3.59 g scores 3 marks	
(iii)	M1 (0.744 ÷ 0.850) × 100		2
	M2 87.5(%)	ALLOW 2 or more significant figures	15 marks

Question number	Answer	Notes	Marks
7 (a)	M1 crude oil is heated / vapourised M2 vapours / gases / compounds / hydrocarbons rise up the column	ALLOW boiled	4
	M3 the column is hotter at the bottom than the top	ALLOW temperature gradient of the column	
	M4 vapours / compounds / hydrocarbons condense at their boiling point	ALLOW vapours / compounds / hydrocarbons / condense at different heights ALLOW the vapours / compounds / hydrocarbons / fractions have different boiling points.	
(b)	M1 temperature of 600°C - 700°C		2
	M2 catalyst of silica / alumina	ALLOW aluminosilicates / zeolites / silicon dioxide / aluminium oxide IGNORE references to pressure	

Question			
number	Answer	Notes	Marks
(c) (i)	M1 nitrogen (from the air) reacts / combines with oxygen (from the air) M2 at high temperatures (in the car engine)	REJECT any implication that oxygen or nitrogen come from the fuel.	2
	- ,		
(ii)	Any one from:		1
	acid rain		
	respiratory problems		
(iii)	Example calculation		5
	M1 volume of carbon dioxide = $206\ 000\ cm^3$ / $2.06 \times 10^5\ cm^3$ / $206\ dm^3$		
	M2 volume of carbon dioxide per km = 51500 cm^3 / $5.15 \times 10^4 \text{ cm}^3$ / 51.5 dm^3	Division by 4 can happen in M1, M2, M3 or M5 ALLOW M1 ÷ 4	
	M3 (51 500 ÷ 24 000) = 2.15 moles	ALLOW M2 or M1 ÷ 24 000	
	M4 M _r of carbon dioxide is 44		
	M5 mass of carbon dioxide per Km = 94.4 g	ALLOW 94 – 95 g ALLOW ecf from incorrect M _r	
		Correct answer of 94 – 95 g scores 5 marks.	
			14 marks