

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

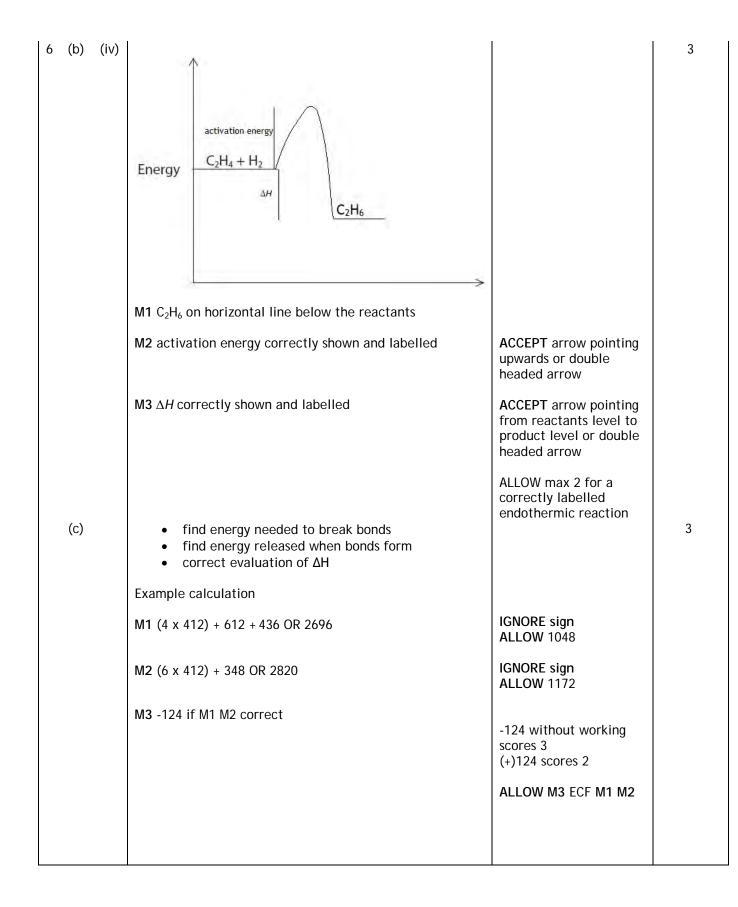
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	B box 2 The only correct answer is B because box 2 contains two different particles in the same space that are not chemically joined A is not correct because box A shows an element C is not correct because box C shows an element D is not correct because box 4 shows a compound		1
(ii)	C Boxes 1 and 3 The only correct answer is C because boxes 1 and 2 contain one type of atom only. A is not correct because box 2 shows a mixture B is not correct because box 2 shows a mixture D is not correct because box 4 shows a compound		1
(iii)	M1 (box 5 shows) two (different) elements	ALLOW two (different) types of atoms REJECT mixture for M1	2
	M2 (chemically) bonded (together)	ALLOW (chemically) combined/joined (together) M2 DEP on mention of elements/atoms in M1	
(b) (i)	C number of protons		1
(6)	The only correct answer is B because the elements in the periodic table are arranged in order of proton number A is not correct because elements are not arranged in order of mass number B is not correct because elements are not arranged in order of the number of neutrons D is not correct because elements are not arranged in order of reactivity		
(ii)	A electrons in the outer shell The only correct answer is A because elements in the same group of the periodic table have the same number of electrons in the outer shell. B Is not the correct answer because elements in the same period have the same number of shells C elements in the same group do not have the same number of neutrons D is not the correct answer because elements in the same group do not have the same number of protons		1

Question	Answer	Notes	Marks
number 2 (a)	M1 level of the water must be below the dyes/start line	ACCEPT dyes/start line should be above water level	2
	M2 the start line must be drawn in pencil		
2 (b) (i)	2 marks for any two conclusions from		3
	(the green food colouring)		
	M1 contains (dye) B and (dye) D		
	M2 contains an unknown dye		
	M3 does not contain A or C		
	M4 contains three dyes	ALLOW is not pure	
	and 1 mark for a correct explanation of given conclusion for the green food colouring		
	eg (explanation for M1) because has spots at same level (as B and D)		
	eg (explanation for M2) because has a spot at different level (from A B C D)		
	eg (explanation for M3) because has no spots at same level (as A and C)		
	eg (explanation for M4) because has three spots		
(ii)	M1 (distance moved by solvent correctly measured) = 9.5 (cm)	ALLOW a tolerance of ±2mm	3
	M2 use of		
	R _f = <u>distance moved by the dye C</u> distance moved by the solvent	eg <u>6.2</u> 9.5 ALLOW ECF from M1	
	M3 evaluation of R _f	eg (<u>6.2)</u> = 0.65(3) (9.5)	
		ALLOW 1-4 sig fig ALLOW ECF from M2	
(iii)	(dye A) is not soluble in water	ALLOW solvent for water	1


Answer	Notes	Marks
		1
The only correct answer is B the reaction of two solutions to produce an insoluble solid is precipitation. A is not correct because this reaction is not neutralisation C is not correct because this reaction is not a redox reaction D is not correct because this reaction is not thermal decomposition		
M1 wash the solid with (deionised) water		2
M2 suitable method of drying solid eg dry between filter papers/on paper towel/in (warm) oven/in a desiccator	ALLOW leave to dry ALLOW leave in a warm place ALLOW leave for the water to evaporate IGNORE dry it alone REJECT hot oven or any method of direct heating eg Bunsen burner REJECT references (direct or inferred) to silver chloride solution or crystallisation for M1 and M2 No M2 if solid washed after drying	
Any one from:		1
M1 (hydrochloric acid/it) contains chloride ions M2 (hydrochloric acid/it) produces a (white) precipitate with silver nitrate M3 (hydrochloric acid/it) reacts with silver nitrate	ALLOW contains CI-	
M1 n(AgNO $_3$ or AgCI) = 0.0025		2
M2 (mass AgCI) = 0.0025 x 143.5 = 0.35(9)g	ALLOW ECF from M1 ALLOW one or more sig fig Correct answer without working scores 2 marks.	
	solutions to produce an insoluble solid is precipitation. A is not correct because this reaction is not neutralisation C is not correct because this reaction is not a redox reaction D is not correct because this reaction is not thermal decomposition M1 wash the solid with (deionised) water M2 suitable method of drying solid eg dry between filter papers/on paper towel/in (warm) oven/in a desiccator Any one from: M1 (hydrochloric acid/it) contains chloride ions M2 (hydrochloric acid/it) produces a (white) precipitate with silver nitrate M3 (hydrochloric acid/it) reacts with silver nitrate M1 n(AgNO ₃ or AgCl) = 0.0025	B Precipitation The only correct answer is B the reaction of two solutions to produce an insoluble solid is precipitation. A is not correct because this reaction is not neutralisation C is not correct because this reaction is not a redox reaction D is not correct because this reaction is not thermal decomposition M1 wash the solid with (deionised) water M2 suitable method of drying solid eg dry between filter papers/on paper towel/in (warm) oven/in a desiccator ALLOW leave to dry ALLOW leave in a warm place ALLOW leave for the water to evaporate IGNORE dry it alone REJECT references (direct or inferred) to silver chloride solution or crystallisation for M1 and M2 No M2 if solid washed after drying Any one from: M1 (hydrochloric acid/it) contains chloride ions M2 (hydrochloric acid/it) produces a (white) precipitate with silver nitrate M3 (hydrochloric acid/it) reacts with silver nitrate M1 n(AgNO ₃ or AgCl) = 0.0025 M2 (mass AgCl) = 0.0025 x 143.5 = 0.35(9)g ALLOW ECF from M1 ALLOW one or more sig fig Correct answer without

Question number	Answer	Notes	Marks
4 (a)	M1 layers of atoms/positive ions	IGNORE layers unqualified REJECT layers of molecules	2
	M2 can slide over one another	M2 DEP on mention of layers/atoms/ions in M1	
4 (b) (i)	ions cannot move	ALLOW ions are in fixed positions/in a lattice IGNORE no free ions REJECT any reference to electrons	1
(ii)	$2Br \rightarrow Br_2 + 2e$		1
(iii)	M1 lead ions (are positive and) are attracted to the negative electrode / Pb ²⁺ (ions) are attracted to the negative electrode	ALLOW cathode for negative electrode	2
	M2 lead ions gain electrons / Pb ²⁺ (ions) gain electrons (to form lead)	ALLOW a correct half equation for M2 IGNORE references to redox ALLOW lead ions get discharged (to form lead)	
(iv)	metal or lead connects the electrodes or completes the circuit OWTTE	ALLOW metal or lead conducts electricity ALLOW metal or lead allows electrons to flow	1

Question number	Answer	Notes	Marks
5 (a) (i)	Any two from:		2
	M1 (lithium) moves (on the surface)	ALLOW floats	
	M2 (lithium) gets smaller/disappears	ALLOW dissolves	
	M3 colourless solution forms	IGNORE white trail forms	
		REJECT melts / turns into a ball ALLOW temperature increases/heat given off	
(ii)	(when mixed with air) lit spill/splint or flame gives (squeaky) pop	must refer to test and result IGNORE squeaky pop test alone ALLOW burns with (squeaky) pop	1
		REJECT glowing spill/splint and pop	
5 (b) (i)	Any one from:		1
	M1 more rapid bubbles/fizzing/effervescence		
	M2 turns into a ball	ALLOW potassium melts	
	M3 moves more quickly	ALLOW gets smaller/disappears more quickly	
	M4 catches alight / burns / produces a flame	IGNORE flame colour	
(ii)	M1 potassium has more shells than lithium	ALLOW potassium atom is bigger than lithium	3
		ALLOW outer shell/electron is further from nucleus	
	M2 (therefore) there is less attraction between the outer shell/electron and the nucleus	ALLOW more repulsion (from inner shells) or more shielding (from the nuclear attraction)	
		ALLOW nuclear pull for the outer shell/electron is weaker	
	M3 so the electron in the outer shell is more easily lost	ACCEPT answers in terms of lithium for M1, M2 and M3	

Question number	Answer	Notes	Marks
5 (c) (i)	M1 n(Li) = $\frac{0.500}{7}$ OR 0.0714 M2 n(H ₂) = $\frac{0.0714}{2}$ OR 0.0357	ALLOW ECF from M1	3
	M3 volume of H_2 (= 0.0357 x 24000) = 857 (cm ³)	ALLOW ECF M2 x 24 000 M3 must be to 3 sig fig Correct answer to 3 sig fig without working	
(ii)	M1 n(H ₂ SO ₄)= 0.02485 x 0.1 OR 0.002485 M2 n(LiOH) = 2 x 0.002485 OR 0.00497	scores 3 marks. ALLOW ECF from M1	3
	M3 concentration of LiOH = 0.0331 (mol/dm ³)	ALLOW ECF from M2 (M2 ÷ 0.150) ALLOW any number of sig fig except one for M1 M2 and M3 Correct answer without working scores 3 marks.	

Question number	Answer	Notes	Marks
6 (a)	A description including the following points:		4
	M1 (use) fractional distillation / fractionating column / fractionating tower		
	M2 (crude oil) heated / vaporised	ALLOW boiled	
	M3 column is cooler at top / hotter at the bottom / idea of temperature gradient		
	M4 fractions condense/collected at different heights OWTTE	ALLOW fractions with high(er) boiling	
	OR fractions have different boiling point (ranges)	points/large(r) molecules condense/collected near bottom ORA	
6 (b) (i)	M1 particles/molecules are closer together	ALLOW more particles/molecules per unit volume	2
	M2 therefore more (successful) collisions per unit time	ALLOW more frequent (successful) collisions If reference to particles have more energy/move faster, then 0/2	
(ii)	M1 (a catalyst provides) an alternative pathway	ALLOW a catalyst provides a surface for the reaction to take place on	2
	M2 of lower activation energy	ALLOW so more collisions/particles have energy greater than the activation energy.	
(iii)	increase the temperature	ALLOW heat it up IGNORE references to concentration REJECT increase the surface area	1

Question number	Answer	Notes	Mark
7 (a) (i)	CO ₂		1
(ii)	(otherwise) ethanoic acid will form	ALLOW (otherwise) ethanol will be oxidised or react with oxygen ALLOW fermentation/reaction/respiration needs to be anaerobic ALLOW (otherwise) ethanol would not be formed /CO ₂ and H ₂ O would be formed	1
(iii)	M1(reaction is catalysed by) enzymes (in yeast)	IGNORE yeast unqualified	2
	M2 which will denature (above 40°C)	ALLOW enzymes do not work above 40°C	
(iv)	M1 maximum mass of ethanol = 8 x 46 = 368 (g)	above 40 0	2
(,	M2 <u>55.2</u> x 100 (=15%)		
	Alternative method:		
	M1 actual yield of ethanol in mol = $\frac{55.2}{46}$ = 1.2		
	M2 <u>1.2</u> x 100 (=15%)		
(b) (i)	M1 rate of the forwards reaction = the rate of the backwards reaction	IGNORE it is reversible reaction	2
	M2 the concentrations of reactants and products remain constant	REJECT concentrations of reactants and products are equal or are the same	
(b) (ii)	M1 an increase in temperature shifts the (position of) equilibrium in the endothermic direction (so backwards reaction is endothermic)	IGNORE references to Le Chatelier's Principle ALLOW heating for increase in temperature	2
	M2 so forward reaction is exothermic	M2 DEP M1 or near miss	

7 (c) (i)	M1 (displayed formula of A - propanoic acid) HHO H-C-C-C HHO HO HO M2 (displayed formula of B - butan-1-ol) HHHHHHHHHH	ALLOW 1 mark if both OH but otherwise correct	2
(c) (ii)	M1 add a named carbonate or hydrogencarbonate	ALLOW correct formula	2
	M2 effervescence/bubbles/fizzing OR	M2 DEP M1 or near miss ALLOW carbon dioxide/CO ₂ produced REJECT incorrect gas	
	M1 add a suitable named metal e.g. magnesium, aluminium, zinc, iron	ALLOW correct symbol REJECT a metal that is too reactive e.g. potassium or too unreactive e.g. copper	
	M2 effervescence/bubbles/fizzing	M2 DEP M1 or near miss ALLOW hydrogen/H ₂ produced	
	OR	REJECT incorrect gas	
	M1 add a named alcohol (and some concentrated sulfuric acid and warm)	ALLOW correct formula	
	M2 sweet smell (of an ester)	M2 DEP M1 or near miss	