

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Physics (4PH1)
Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4PH1_2P_msc_20200305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Answe	er	Notes	Marks
number			110000	
1 (a)	1 mark for each correct tick	;;;	4 candidate ticks = 2 marks max.	3
	Methods of	Uses a renewable	5-6 candidate ticks = 1	
	generating electricity	energy resource	mark max.	
	coal power station		7 candidate ticks = 0 marks	
	diesel generator			
	geothermal power station	✓		
	hydroelectric power station	✓		
	natural gas turbine			
	nuclear power station			
	solar cell	(✓)		
	wind turbine	✓		
(b) (i)	B (by radiation);			1
	A is incorrect because transf C is incorrect because there the panel D is incorrect because it req of space	are no electrical conduct	tors between the Sun and	
(ii)	any 1 of: MP1. only generates electr eq;	icity when it is sunny /	allow not generating electricity at night ignore 'depends on the weather'	1
	MP2. idea of visual pollution	on;	Condone 'ugly'	
	MP3. idea that solar panels	s take up a lot of space;		

Total for Question 1 = 5 marks

Question number	Answer	Notes	Marks
2 (a)	density = mass / volume;	allow standard symbols and rearrangements e.g. ρ = m / V condone use of d for density	1
(b)	substitution OR rearrangement;	equation must be correct	3
	evaluation;	-1 for POT error	
	unit;	allow m ³ only if consistent with data used	
	e.g. 8.46 = 454 / V OR V = m / p (V =) 53.7 cm ³	53.664 5.37×10 ⁻⁵ m ³ gains 3 marks	

Total for Question 2 = 4 marks

Question number	Answer	Notes	Marks
3 (a) (i)	momentum = mass × velocity;	allow standard symbols and rearrangements e.g. p = m × v reject use of m for momentum	1
(ii)	substitution; evaluation to 2 or 3 s.f.; e.g. (p =) 17 × 2.9 (p =) 49 (kg m/s)	allow 49.3 (kg m/s)	2
(b) (i)	use of conservation of momentum; momentum of stone A after collision calculated; momentum of stone B after collision calculated; evaluation of velocity of stone B;	seen written explicitly or implied by working allow, for 1 mark only, "(total) momentum before = (total) momentum after" if no other marks scored.	4
	e.g. momentum before = momentum after $p_A = (17 \times 0.4 =) 6.8$ $p_B = (50 - 6.8 =) 43.2$ $(v_B = 43.2 / 19 =) 2.3 (m/s)$	allow 42.5, 42.2 from non-rounded values for (a) allow 2.27 (m/s) allow 2.22, 2.23	
(ii)	conversion of ms to s; substitution into $F = \Delta p / t$; evaluation of force; e.g. $t = 0.025 s$	allow ÷1000 / 0.025 seen anywhere in working no mark for formula alone as given in paper 2 marks max. for POT error e.g. 1.7 (N)	3
	F = 43.2 / 0.025 (F =) 1700 (N)	allow ecf from (b)(i) allow answers in the range 1688-1728 accept, in full, responses including use of 'F = ma' provided correct values for u, v and Δt to calculate a.	

Question number	Answer	Notes	Marks
4 (a)	any four of: MP1. idea of friction/rubbing (between powder and funnel/plastic tubing); MP2. powder becomes charged; MP3. metals are conductors; MP4. charge is transferred to/from metal rod and thin piece of metal; MP5. metal rod and thin piece of metal have the same charge; MP6. therefore they repel / eq;	ignore whether positive or negative charge allow electrons transferred	4
(b) (i)	A (gains negatively charged electrons); B is incorrect because it would leave the metal can perform the control of the contro	arged	1
(ii)	charge = current × time;	allow standard symbols and rearrangements e.g. Q = I × t reject use of C/c for charge or current	1
(iii)	substitution; rearrangement; evaluation; e.g. (-) $9.4 \times 10^{-9} = \text{current} \times 12$ (current =) (-) $9.4 \times 10^{-9} / 12$ (current =) (-) 7.8×10^{-10} (A)	-1 for POT error 7.83 × 10 ⁻¹⁰ (A)	3
(c)	any three of: MP1. any relevant danger; MP2. idea that metal can/aircraft should be earthed; MP3. charge will flow to/from ground; MP4. idea that no charge will build up on metal can/aircraft;	e.g. spark, explosion, fire allow description of earthing e.g. 'connect metal can to ground with a wire' allow addition of earth path to diagram allow idea that 'charge is neutralised'	3

Question number	Answer	Notes	Marks
5 (a)	 any 4 of: MP1. connect oscilloscope to microphone; MP2. adjust the oscilloscope to get a steady trace / eq; MP3. adjust time base / oscilloscope to give a minimum of 1 complete cycle (on the screen); MP4. measure number of squares for a number of complete cycles / waves; MP5. multiply number of squares by the time base / eq. (to find T); MP6. use f = 1/T; 	ignore references to wavelength, amplitude, finding number of waves passing a point allow 'use oscilloscope to measure/find the time period / time for one wave' if neither MP4 or MP5 scored	4
(b) (i)	any 1 of: MP1. force / tension (on the string); MP2. material string is made from; MP3. diameter / thickness of the string; MP4. temperature;		1
(ii)	correctly calculated mean; given to nearest whole number; e.g. 34.3 gains first mark 34 gains both marks	mark independently	2
(iii)	suitable linear scale chosen (>50% of grid used); axes labelled with quantities and unit; all plotting correct to nearest half square;	ignore orientation ignore point at 60cm	3
(iv)	acceptable curve of best fit drawn;	i.e. smooth curve within 1 small square of each point ignore parts of curve outside plotted points if extrapolated	1
(v)	string length in range 26-31cm;	allow ecf from candidate's line	1
(vi)	both 120cm and 140cm strings / eq; (because) humans cannot hear frequencies lower than 20Hz;	allow correctly read string length from graph for 20Hz frequency	2

Question number	Answer	Notes	Marks
6 (a)	(a measurement of) the brightness (of a star); at a standard distance;	allow measurement of luminosity/power of a star apparent magnitude allow at 10 pc/32.6 ly. condone incorrect distance.	2
(b)	correct absolute magnitude scale; x-axis labelled 'colour'; main sequence top-left to bottom-right with clear flatter region in the middle; white dwarf region in bottom-left corner with part of it in line with 'white' label on x-axis; red giant region in top-right corner with part of it in line with 'red' label on x-axis; -5 0 main sequence magnitude white dwarfs +15 blue white dwarfs colour	i.e. going from +15 to -5 in regular intervals condone 'temperature' red giants w red	5

Total for Question 6 = 7 marks

estion mber	Answer	Notes	Marks
a) (i)	(92 =) number of protons (238 =) number of nucleons / number of protons <u>and</u> neutrons	ignore atomic number allow mass ignore mass number	2
(ii)	(nucleus) loses two protons; (nucleus) loses two neutrons;		2
b) (i)	evaluation of mass of U-238 in plate; evaluation of number of atoms;	accept 49.5 g or 0.0495 kg or correct standard form	2
	e.g. mass = $(1.1 \times 0.045) = 0.0495$ kg $(n = 0.0495 / 4.0 \times 10^{-27} =) 1.2 \times 10^{25}$	1.2375×10 ²⁵	
(ii)	any three from idea that food is irradiated / not contaminated; alpha cannot penetrate skin or body / range of alpha insufficient to reach body; contains low percentage of uranium(-238); (long half-life means that) activity will be very low / decays very slowly;	ignore references to paper Accept 'mass' for 'percentage'	3
	mber a) (i) (ii)	mber (i) (92 =) number of protons (238 =) number of nucleons / number of protons and neutrons (ii) (nucleus) loses two protons; (nucleus) loses two neutrons; (i) evaluation of mass of U-238 in plate; evaluation of number of atoms; e.g. mass = (1.1 × 0.045) = 0.0495 kg (n = 0.0495 / 4.0 × 10 ⁻²⁷ =) 1.2 × 10 ²⁵ (ii) any three from idea that food is irradiated / not contaminated; alpha cannot penetrate skin or body / range of alpha insufficient to reach body; contains low percentage of uranium(-238);	mber (238 =) number of protons (238 =) number of protons and neutrons ignore atomic number allow mass ignore mass number (ii) (nucleus) loses two protons; (nucleus) loses two neutrons; (accept 49.5 g or 0.0495 kg or correct standard form evaluation of number of atoms; (nucleus) loses two neutrons; (nucle

Total for Question 7 = 9 marks

Question number	Answer	Notes	Marks
8 (a)	A (into the page); B is incorrect because this field would produce a force C is incorrect because this field would produce a force D is incorrect because this field would not produce a second	e to the left	1
(b)	at least one straight, vertical central field line; at least one field line drawn circling the wire / at least one peripheral field loop; field direction correct and consistent throughout and shown on at least two field lines;	ignore breaking of field lines as they pass through the centre of the coil judge by eye condone spiral drawn around wire DOP	3
(c) (i)	any three of: MP1. (current produces) alternating magnetic field	allow equivalent words for alternating e.g. variable, changing etc. allow higher level responses in terms of flux linkage	3
(ii)	any one advantage; e.g. battery will charge faster / stronger magnetic field any one disadvantage; e.g. causes a great(er) heating effect	condone 'greater risk of electric shock'	2